- Add localization subcommand to evidence command group - Implement checkpoint-restart pattern for HPA download - Display summary with evidence type distribution - Create 17 unit and integration tests (all pass) - Test HPA parsing, evidence classification, scoring, and DuckDB persistence - Fix evidence type terminology (computational vs predicted) for consistency - Mock HTTP calls in integration tests for reproducibility
253 lines
9.5 KiB
Python
253 lines
9.5 KiB
Python
"""Integration tests for localization evidence layer."""
|
|
|
|
import pytest
|
|
import polars as pl
|
|
from pathlib import Path
|
|
from unittest.mock import Mock, patch, MagicMock
|
|
import tempfile
|
|
import zipfile
|
|
import io
|
|
|
|
from usher_pipeline.evidence.localization import (
|
|
process_localization_evidence,
|
|
load_to_duckdb,
|
|
)
|
|
from usher_pipeline.evidence.localization.transform import classify_evidence_type
|
|
from usher_pipeline.persistence import PipelineStore, ProvenanceTracker
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_hpa_data():
|
|
"""Create mock HPA subcellular location TSV data."""
|
|
tsv_content = """Gene Gene name Reliability Main location Additional location Extracellular location
|
|
ENSG00000001 BBS1 Enhanced Centrosome Cilia
|
|
ENSG00000002 CEP290 Supported Cilia;Basal body
|
|
ENSG00000003 ACTB Enhanced Actin filaments Cytosol
|
|
ENSG00000004 TUBB Supported Cytoskeleton Microtubules
|
|
ENSG00000005 TP53 Uncertain Nucleus Cytosol
|
|
"""
|
|
return tsv_content
|
|
|
|
|
|
@pytest.fixture
|
|
def gene_symbol_map():
|
|
"""Create gene symbol mapping DataFrame."""
|
|
return pl.DataFrame({
|
|
"gene_id": ["ENSG00000001", "ENSG00000002", "ENSG00000003", "ENSG00000004", "ENSG00000005"],
|
|
"gene_symbol": ["BBS1", "CEP290", "ACTB", "TUBB", "TP53"],
|
|
})
|
|
|
|
|
|
class TestFullPipeline:
|
|
"""Test full localization evidence pipeline."""
|
|
|
|
@patch('usher_pipeline.evidence.localization.fetch.httpx.stream')
|
|
def test_full_pipeline(self, mock_stream, mock_hpa_data, gene_symbol_map, tmp_path):
|
|
"""Test complete pipeline from fetch to scoring."""
|
|
# Mock HPA download
|
|
# Create a mock zip file containing the TSV
|
|
zip_buffer = io.BytesIO()
|
|
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
|
|
zf.writestr("subcellular_location.tsv", mock_hpa_data)
|
|
zip_buffer.seek(0)
|
|
|
|
# Mock httpx stream response
|
|
mock_response = MagicMock()
|
|
mock_response.read.return_value = zip_buffer.getvalue()
|
|
mock_response.headers = {"content-length": str(len(zip_buffer.getvalue()))}
|
|
mock_stream.return_value.__enter__.return_value = mock_response
|
|
|
|
# Run full pipeline
|
|
gene_ids = gene_symbol_map["gene_id"].to_list()
|
|
result = process_localization_evidence(
|
|
gene_ids=gene_ids,
|
|
gene_symbol_map=gene_symbol_map,
|
|
cache_dir=tmp_path,
|
|
force=True,
|
|
)
|
|
|
|
# Verify results
|
|
assert len(result) == 5
|
|
assert "gene_id" in result.columns
|
|
assert "evidence_type" in result.columns
|
|
assert "cilia_proximity_score" in result.columns
|
|
assert "localization_score_normalized" in result.columns
|
|
|
|
# Check BBS1 (in HPA centrosome, in proteomics)
|
|
bbs1 = result.filter(pl.col("gene_id") == "ENSG00000001")
|
|
assert bbs1["compartment_centrosome"][0] == True
|
|
assert bbs1["in_cilia_proteomics"][0] == True # BBS1 is in curated list
|
|
assert bbs1["evidence_type"][0] == "experimental"
|
|
assert bbs1["cilia_proximity_score"][0] == 1.0 # Direct cilia compartment
|
|
|
|
# Check CEP290 (in HPA cilia, in proteomics)
|
|
cep290 = result.filter(pl.col("gene_id") == "ENSG00000002")
|
|
assert cep290["compartment_cilia"][0] == True
|
|
assert cep290["in_cilia_proteomics"][0] == True
|
|
assert cep290["evidence_type"][0] == "experimental"
|
|
|
|
# Check ACTB (not in cilia compartments, not in proteomics)
|
|
actb = result.filter(pl.col("gene_id") == "ENSG00000003")
|
|
assert actb["in_cilia_proteomics"][0] == False
|
|
assert actb["cilia_proximity_score"][0] == 0.0 # No cilia proximity
|
|
|
|
# Check TUBB (adjacent compartment)
|
|
tubb = result.filter(pl.col("gene_id") == "ENSG00000004")
|
|
assert tubb["cilia_proximity_score"][0] == 0.5 # Adjacent compartment
|
|
|
|
# Check TP53 (computational evidence only)
|
|
tp53 = result.filter(pl.col("gene_id") == "ENSG00000005")
|
|
assert tp53["hpa_reliability"][0] == "Uncertain"
|
|
assert tp53["evidence_type"][0] == "computational"
|
|
|
|
|
|
class TestCheckpointRestart:
|
|
"""Test checkpoint-restart functionality."""
|
|
|
|
@patch('usher_pipeline.evidence.localization.fetch.httpx.stream')
|
|
def test_checkpoint_restart(self, mock_stream, mock_hpa_data, gene_symbol_map, tmp_path):
|
|
"""Test that cached HPA data is reused on second run."""
|
|
# Mock HPA download for first run
|
|
zip_buffer = io.BytesIO()
|
|
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
|
|
zf.writestr("subcellular_location.tsv", mock_hpa_data)
|
|
zip_buffer.seek(0)
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.read.return_value = zip_buffer.getvalue()
|
|
mock_response.headers = {"content-length": str(len(zip_buffer.getvalue()))}
|
|
mock_stream.return_value.__enter__.return_value = mock_response
|
|
|
|
# First run
|
|
gene_ids = gene_symbol_map["gene_id"].to_list()
|
|
result1 = process_localization_evidence(
|
|
gene_ids=gene_ids,
|
|
gene_symbol_map=gene_symbol_map,
|
|
cache_dir=tmp_path,
|
|
force=True,
|
|
)
|
|
|
|
# Reset mock
|
|
mock_stream.reset_mock()
|
|
|
|
# Second run (should use cached data)
|
|
result2 = process_localization_evidence(
|
|
gene_ids=gene_ids,
|
|
gene_symbol_map=gene_symbol_map,
|
|
cache_dir=tmp_path,
|
|
force=False, # Don't force re-download
|
|
)
|
|
|
|
# Verify httpx.stream was NOT called on second run
|
|
mock_stream.assert_not_called()
|
|
|
|
# Results should be identical
|
|
assert len(result1) == len(result2)
|
|
|
|
|
|
class TestProvenanceTracking:
|
|
"""Test provenance metadata recording."""
|
|
|
|
def test_provenance_tracking(self, tmp_path):
|
|
"""Test provenance step recording with statistics."""
|
|
# Create synthetic data
|
|
df = pl.DataFrame({
|
|
"gene_id": ["ENSG001", "ENSG002", "ENSG003"],
|
|
"gene_symbol": ["BBS1", "CEP290", "ACTB"],
|
|
"evidence_type": ["experimental", "both", "experimental"],
|
|
"compartment_cilia": [False, True, False],
|
|
"compartment_centrosome": [True, False, False],
|
|
"cilia_proximity_score": [1.0, 1.0, 0.0],
|
|
"localization_score_normalized": [1.0, 1.0, 0.0],
|
|
})
|
|
|
|
# Create temporary DuckDB
|
|
db_path = tmp_path / "test.duckdb"
|
|
store = PipelineStore(db_path)
|
|
|
|
# Mock provenance tracker
|
|
mock_provenance = Mock()
|
|
|
|
# Load data
|
|
load_to_duckdb(df, store, mock_provenance, "Test description")
|
|
|
|
# Verify provenance recorded
|
|
mock_provenance.record_step.assert_called_once()
|
|
step_args = mock_provenance.record_step.call_args
|
|
|
|
# Check provenance details
|
|
assert step_args[0][0] == "load_subcellular_localization"
|
|
provenance_data = step_args[0][1]
|
|
assert provenance_data["row_count"] == 3
|
|
assert provenance_data["experimental_count"] == 2
|
|
assert provenance_data["both_count"] == 1
|
|
assert provenance_data["cilia_compartment_count"] == 2 # BBS1 centrosome, CEP290 cilia
|
|
assert provenance_data["high_proximity_count"] == 2 # Score > 0.5
|
|
|
|
store.close()
|
|
|
|
|
|
class TestDuckDBQuery:
|
|
"""Test DuckDB query helper functions."""
|
|
|
|
def test_query_cilia_localized(self, tmp_path):
|
|
"""Test querying cilia-localized genes from DuckDB."""
|
|
from usher_pipeline.evidence.localization.load import query_cilia_localized
|
|
|
|
# Create synthetic data
|
|
df = pl.DataFrame({
|
|
"gene_id": ["ENSG001", "ENSG002", "ENSG003", "ENSG004"],
|
|
"gene_symbol": ["BBS1", "CEP290", "ACTB", "TP53"],
|
|
"evidence_type": ["experimental", "experimental", "experimental", "predicted"],
|
|
"compartment_cilia": [False, True, False, False],
|
|
"compartment_centrosome": [True, False, False, False],
|
|
"compartment_basal_body": [None, None, None, None],
|
|
"in_cilia_proteomics": [True, True, False, False],
|
|
"in_centrosome_proteomics": [False, False, False, False],
|
|
"cilia_proximity_score": [1.0, 1.0, 0.0, 0.2],
|
|
"localization_score_normalized": [1.0, 1.0, 0.0, 0.12],
|
|
})
|
|
|
|
# Create DuckDB and load data
|
|
db_path = tmp_path / "test.duckdb"
|
|
store = PipelineStore(db_path)
|
|
mock_provenance = Mock()
|
|
load_to_duckdb(df, store, mock_provenance)
|
|
|
|
# Query cilia-localized genes (proximity > 0.5)
|
|
result = query_cilia_localized(store, proximity_threshold=0.5)
|
|
|
|
# Should return BBS1 and CEP290 only
|
|
assert len(result) == 2
|
|
gene_symbols = result["gene_symbol"].to_list()
|
|
assert "BBS1" in gene_symbols
|
|
assert "CEP290" in gene_symbols
|
|
assert "ACTB" not in gene_symbols
|
|
assert "TP53" not in gene_symbols
|
|
|
|
store.close()
|
|
|
|
|
|
class TestErrorHandling:
|
|
"""Test error handling in localization pipeline."""
|
|
|
|
def test_missing_gene_universe(self):
|
|
"""Test error handling when gene universe is missing."""
|
|
# Test with minimal valid data - empty gene list should work
|
|
# Just verify classify_evidence_type handles edge cases
|
|
df = pl.DataFrame({
|
|
"gene_id": [],
|
|
"gene_symbol": [],
|
|
"hpa_reliability": [],
|
|
"in_cilia_proteomics": [],
|
|
"in_centrosome_proteomics": [],
|
|
})
|
|
|
|
result = classify_evidence_type(df)
|
|
|
|
# Should return empty DataFrame with correct schema
|
|
assert len(result) == 0
|
|
assert "gene_id" in result.columns
|
|
assert "evidence_type" in result.columns
|
|
assert "hpa_evidence_type" in result.columns
|