- Create load_to_duckdb with provenance tracking and tier distribution stats - Add query_poorly_annotated helper to find under-studied genes - Register `evidence annotation` CLI command with checkpoint-restart pattern - Add comprehensive unit tests (9 tests) covering GO extraction, NULL handling, tier classification, score normalization, weighting - Add integration tests (6 tests) for pipeline, idempotency, checkpoint-restart, provenance, queries - All 15 tests pass with proper NULL preservation and schema validation
308 lines
9.6 KiB
Python
308 lines
9.6 KiB
Python
"""Integration tests for annotation evidence layer."""
|
|
|
|
import polars as pl
|
|
import pytest
|
|
from pathlib import Path
|
|
from unittest.mock import Mock, patch, MagicMock
|
|
|
|
from usher_pipeline.config.loader import load_config
|
|
from usher_pipeline.persistence import PipelineStore, ProvenanceTracker
|
|
from usher_pipeline.evidence.annotation import (
|
|
process_annotation_evidence,
|
|
load_to_duckdb,
|
|
query_poorly_annotated,
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def test_config(tmp_path):
|
|
"""Create test configuration."""
|
|
config_dir = tmp_path / "config"
|
|
config_dir.mkdir()
|
|
data_dir = tmp_path / "data"
|
|
data_dir.mkdir()
|
|
|
|
config_yaml = f"""
|
|
project_name: "usher-pipeline-test"
|
|
data_dir: "{data_dir}"
|
|
cache_dir: "{tmp_path / 'cache'}"
|
|
duckdb_path: "{tmp_path / 'test.duckdb'}"
|
|
|
|
versions:
|
|
ensembl_release: 112
|
|
gnomad_version: "4.1"
|
|
|
|
api:
|
|
rate_limit_per_second: 5
|
|
max_retries: 3
|
|
cache_ttl_seconds: 86400
|
|
timeout_seconds: 30
|
|
|
|
scoring:
|
|
gnomad: 0.20
|
|
expression: 0.20
|
|
annotation: 0.15
|
|
localization: 0.15
|
|
animal_model: 0.15
|
|
literature: 0.15
|
|
"""
|
|
config_file = config_dir / "pipeline.yaml"
|
|
config_file.write_text(config_yaml)
|
|
|
|
return load_config(config_file)
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_gene_ids():
|
|
"""Sample gene IDs for testing."""
|
|
return ["ENSG001", "ENSG002", "ENSG003", "ENSG004", "ENSG005"]
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_uniprot_mapping():
|
|
"""Mock UniProt mapping DataFrame."""
|
|
return pl.DataFrame({
|
|
"gene_id": ["ENSG001", "ENSG002", "ENSG003"],
|
|
"uniprot_accession": ["P12345", "Q67890", "A11111"],
|
|
})
|
|
|
|
|
|
@pytest.fixture
|
|
def synthetic_annotation_data():
|
|
"""Create synthetic annotation data for testing."""
|
|
return pl.DataFrame({
|
|
"gene_id": ["ENSG001", "ENSG002", "ENSG003", "ENSG004", "ENSG005"],
|
|
"gene_symbol": ["GENE1", "GENE2", "GENE3", "GENE4", "GENE5"],
|
|
"go_term_count": [50, 15, 5, None, 2],
|
|
"go_biological_process_count": [30, 10, 3, None, 1],
|
|
"go_molecular_function_count": [15, 3, 2, None, 1],
|
|
"go_cellular_component_count": [5, 2, 0, None, 0],
|
|
"uniprot_annotation_score": [5, 4, 3, None, 1],
|
|
"has_pathway_membership": [True, True, False, None, False],
|
|
"annotation_tier": ["well_annotated", "well_annotated", "partially_annotated", "poorly_annotated", "poorly_annotated"],
|
|
"annotation_score_normalized": [0.9, 0.75, 0.45, None, 0.15],
|
|
})
|
|
|
|
|
|
def mock_mygene_querymany(gene_ids, **kwargs):
|
|
"""Mock mygene.querymany response."""
|
|
# Simulate different annotation levels
|
|
return [
|
|
{
|
|
"query": "ENSG001",
|
|
"symbol": "GENE1",
|
|
"go": {
|
|
"BP": [{"id": f"GO:000{i}"} for i in range(30)],
|
|
"MF": [{"id": f"GO:100{i}"} for i in range(15)],
|
|
"CC": [{"id": f"GO:200{i}"} for i in range(5)],
|
|
},
|
|
"pathway": {
|
|
"kegg": [{"id": "hsa00001"}],
|
|
"reactome": [{"id": "R-HSA-00001"}],
|
|
},
|
|
},
|
|
{
|
|
"query": "ENSG002",
|
|
"symbol": "GENE2",
|
|
"go": {
|
|
"BP": [{"id": f"GO:000{i}"} for i in range(10)],
|
|
"MF": [{"id": f"GO:100{i}"} for i in range(3)],
|
|
"CC": [{"id": f"GO:200{i}"} for i in range(2)],
|
|
},
|
|
"pathway": {"kegg": [{"id": "hsa00002"}]},
|
|
},
|
|
{
|
|
"query": "ENSG003",
|
|
"symbol": "GENE3",
|
|
"go": {
|
|
"BP": [{"id": "GO:0001"}, {"id": "GO:0002"}],
|
|
},
|
|
"pathway": {},
|
|
},
|
|
{
|
|
"query": "ENSG004",
|
|
"symbol": "GENE4",
|
|
# No GO or pathway data
|
|
},
|
|
{
|
|
"query": "ENSG005",
|
|
"symbol": "GENE5",
|
|
"go": {
|
|
"BP": [{"id": "GO:0001"}],
|
|
},
|
|
},
|
|
]
|
|
|
|
|
|
def mock_uniprot_api_response():
|
|
"""Mock UniProt API response."""
|
|
return {
|
|
"results": [
|
|
{"primaryAccession": "P12345", "annotationScore": 5},
|
|
{"primaryAccession": "Q67890", "annotationScore": 4},
|
|
{"primaryAccession": "A11111", "annotationScore": 3},
|
|
]
|
|
}
|
|
|
|
|
|
@patch("usher_pipeline.evidence.annotation.fetch._get_mygene_client")
|
|
@patch("usher_pipeline.evidence.annotation.fetch._query_uniprot_batch")
|
|
def test_process_annotation_evidence_pipeline(
|
|
mock_uniprot, mock_mygene_client, mock_gene_ids, mock_uniprot_mapping
|
|
):
|
|
"""Test full annotation evidence processing pipeline."""
|
|
# Setup mocks
|
|
mock_mg = Mock()
|
|
mock_mg.querymany.return_value = mock_mygene_querymany(mock_gene_ids)
|
|
mock_mygene_client.return_value = mock_mg
|
|
|
|
mock_uniprot.return_value = {
|
|
"P12345": 5,
|
|
"Q67890": 4,
|
|
"A11111": 3,
|
|
}
|
|
|
|
# Run pipeline
|
|
result = process_annotation_evidence(mock_gene_ids, mock_uniprot_mapping)
|
|
|
|
# Verify results
|
|
assert result.height == len(mock_gene_ids)
|
|
assert "annotation_tier" in result.columns
|
|
assert "annotation_score_normalized" in result.columns
|
|
|
|
# Check that tiers are classified
|
|
tiers = result["annotation_tier"].unique().to_list()
|
|
assert "well_annotated" in tiers or "partially_annotated" in tiers or "poorly_annotated" in tiers
|
|
|
|
# Verify mygene was called
|
|
mock_mg.querymany.assert_called_once()
|
|
|
|
# Verify UniProt was queried
|
|
mock_uniprot.assert_called()
|
|
|
|
|
|
def test_load_to_duckdb_idempotent(test_config, synthetic_annotation_data):
|
|
"""Test that load_to_duckdb is idempotent (CREATE OR REPLACE)."""
|
|
store = PipelineStore.from_config(test_config)
|
|
provenance = ProvenanceTracker.from_config(test_config)
|
|
|
|
# First load
|
|
load_to_duckdb(synthetic_annotation_data, store, provenance, "First load")
|
|
|
|
# Verify data exists
|
|
df1 = store.load_dataframe("annotation_completeness")
|
|
assert df1 is not None
|
|
assert df1.height == synthetic_annotation_data.height
|
|
|
|
# Second load (should replace)
|
|
modified_data = synthetic_annotation_data.with_columns(
|
|
pl.lit("test_modified").alias("gene_symbol")
|
|
)
|
|
load_to_duckdb(modified_data, store, provenance, "Second load")
|
|
|
|
# Verify data was replaced
|
|
df2 = store.load_dataframe("annotation_completeness")
|
|
assert df2 is not None
|
|
assert df2.height == modified_data.height
|
|
assert all(df2["gene_symbol"] == "test_modified")
|
|
|
|
store.close()
|
|
|
|
|
|
def test_checkpoint_restart(test_config, synthetic_annotation_data):
|
|
"""Test checkpoint-restart pattern."""
|
|
store = PipelineStore.from_config(test_config)
|
|
provenance = ProvenanceTracker.from_config(test_config)
|
|
|
|
# Initially no checkpoint
|
|
assert not store.has_checkpoint("annotation_completeness")
|
|
|
|
# Load creates checkpoint
|
|
load_to_duckdb(synthetic_annotation_data, store, provenance)
|
|
|
|
# Now checkpoint exists
|
|
assert store.has_checkpoint("annotation_completeness")
|
|
|
|
# Can load existing data
|
|
df = store.load_dataframe("annotation_completeness")
|
|
assert df is not None
|
|
assert df.height == synthetic_annotation_data.height
|
|
|
|
store.close()
|
|
|
|
|
|
def test_provenance_recording(test_config, synthetic_annotation_data):
|
|
"""Test that provenance metadata is recorded correctly."""
|
|
store = PipelineStore.from_config(test_config)
|
|
provenance = ProvenanceTracker.from_config(test_config)
|
|
|
|
load_to_duckdb(synthetic_annotation_data, store, provenance)
|
|
|
|
# Verify provenance step was recorded
|
|
steps = provenance.processing_steps
|
|
assert len(steps) > 0
|
|
|
|
step = steps[-1]
|
|
assert step["step_name"] == "load_annotation_completeness"
|
|
assert "row_count" in step["details"]
|
|
assert step["details"]["row_count"] == synthetic_annotation_data.height
|
|
assert "well_annotated_count" in step["details"]
|
|
assert "poorly_annotated_count" in step["details"]
|
|
|
|
store.close()
|
|
|
|
|
|
def test_query_poorly_annotated(test_config, synthetic_annotation_data):
|
|
"""Test querying poorly annotated genes."""
|
|
store = PipelineStore.from_config(test_config)
|
|
provenance = ProvenanceTracker.from_config(test_config)
|
|
|
|
# Load data
|
|
load_to_duckdb(synthetic_annotation_data, store, provenance)
|
|
|
|
# Query poorly annotated genes (score <= 0.3)
|
|
result = query_poorly_annotated(store, max_score=0.3)
|
|
|
|
# Should return genes with low scores
|
|
assert result.height > 0
|
|
assert all(result["annotation_score_normalized"] <= 0.3)
|
|
|
|
# Results should be sorted by score (lowest first)
|
|
scores = result["annotation_score_normalized"].to_list()
|
|
assert scores == sorted(scores)
|
|
|
|
store.close()
|
|
|
|
|
|
def test_null_handling_throughout_pipeline(test_config, mock_gene_ids, mock_uniprot_mapping):
|
|
"""Test that NULL values are preserved throughout the pipeline."""
|
|
# Create data with NULLs
|
|
data_with_nulls = pl.DataFrame({
|
|
"gene_id": ["ENSG001", "ENSG002"],
|
|
"gene_symbol": ["GENE1", "GENE2"],
|
|
"go_term_count": [10, None],
|
|
"go_biological_process_count": [7, None],
|
|
"go_molecular_function_count": [2, None],
|
|
"go_cellular_component_count": [1, None],
|
|
"uniprot_annotation_score": [3, None],
|
|
"has_pathway_membership": [True, None],
|
|
"annotation_tier": ["partially_annotated", "poorly_annotated"],
|
|
"annotation_score_normalized": [0.5, None],
|
|
})
|
|
|
|
store = PipelineStore.from_config(test_config)
|
|
provenance = ProvenanceTracker.from_config(test_config)
|
|
|
|
# Load to DuckDB
|
|
load_to_duckdb(data_with_nulls, store, provenance)
|
|
|
|
# Load back and verify NULLs preserved
|
|
result = store.load_dataframe("annotation_completeness")
|
|
|
|
# Gene with NULL GO should have NULL in result
|
|
gene2 = result.filter(pl.col("gene_id") == "ENSG002")
|
|
assert gene2["go_term_count"][0] is None
|
|
assert gene2["annotation_score_normalized"][0] is None
|
|
|
|
store.close()
|