Researcher-facing README explaining pipeline rationale, six evidence layers with scientific basis, scoring methodology, and step-by-step execution guide for CLI newcomers. CLAUDE.md provides development context for future Claude Code sessions. Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
95 lines
4.6 KiB
Markdown
95 lines
4.6 KiB
Markdown
# CLAUDE.md
|
|
|
|
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
|
|
|
## Project Overview
|
|
|
|
Bioinformatics pipeline for discovering under-studied candidate genes related to Usher syndrome and ciliopathies. Screens ~22,600 human protein-coding genes across 6 evidence layers, producing weighted composite scores and tiered candidate lists.
|
|
|
|
## Commands
|
|
|
|
```bash
|
|
# Install (editable, with dev deps)
|
|
pip install -e ".[dev]"
|
|
|
|
# Run full pipeline (sequential steps)
|
|
usher-pipeline setup # Fetch gene universe via mygene
|
|
usher-pipeline evidence gnomad # gnomAD constraint metrics
|
|
usher-pipeline evidence annotation # GO/InterPro/pathway annotations
|
|
usher-pipeline evidence expression # HPA + GTEx + CellxGene tissue expression
|
|
usher-pipeline evidence localization # HPA subcellular + cilia proteomics
|
|
usher-pipeline evidence animal-models # HCOP orthologs + MGI/ZFIN/IMPC phenotypes
|
|
usher-pipeline evidence literature --email USER@EMAIL # PubMed via NCBI E-utilities
|
|
usher-pipeline score # Weighted composite scoring
|
|
usher-pipeline report # Generate TSV/Parquet + visualizations
|
|
usher-pipeline validate # Validate known Usher genes rank highly
|
|
|
|
# Tests
|
|
pytest # All tests
|
|
pytest tests/test_gnomad.py # Single test file
|
|
pytest tests/test_gnomad.py::test_name # Single test
|
|
pytest -k "not integration" # Skip integration tests (which hit APIs)
|
|
```
|
|
|
|
## Architecture
|
|
|
|
### Data Flow
|
|
```
|
|
mygene API → gene_universe table (DuckDB)
|
|
↓
|
|
6 evidence layers (each: fetch → transform → load to DuckDB)
|
|
↓
|
|
scoring/integration.py: LEFT JOIN all layers → weighted composite
|
|
↓
|
|
output/: TSV, Parquet, visualizations, reproducibility report
|
|
```
|
|
|
|
### Key Design Decisions
|
|
|
|
- **DuckDB** for persistence (`data/pipeline.duckdb`). Single-writer — no concurrent access from multiple processes.
|
|
- **Polars** for data manipulation (LazyFrame for fetch, DataFrame for transforms requiring horizontal ops).
|
|
- **NULL preservation**: Missing evidence ≠ zero score. LEFT JOINs preserve NULLs; scoring weights only applied to non-NULL layers (`evidence_count` tracks coverage).
|
|
- **Idempotent loads**: Each evidence layer uses `CREATE OR REPLACE TABLE`.
|
|
- **Checkpoint-restart**: Literature layer supports resuming via existing progress in DuckDB.
|
|
|
|
### Source Layout
|
|
|
|
```
|
|
src/usher_pipeline/
|
|
├── cli/ # Click commands (setup, evidence, score, report, validate)
|
|
├── config/ # YAML config loading + schema (ScoringWeights, DataVersions)
|
|
├── persistence/ # PipelineStore (DuckDB wrapper), ProvenanceTracker
|
|
├── gene_mapping/ # Gene universe fetch (mygene) + validation
|
|
├── evidence/ # 6 evidence layers, each with:
|
|
│ ├── {layer}/fetch.py # Download/API calls
|
|
│ ├── {layer}/transform.py # Data processing
|
|
│ ├── {layer}/load.py # DuckDB persistence
|
|
│ └── {layer}/models.py # Pydantic models + constants
|
|
├── scoring/ # Composite scoring, validation, sensitivity analysis
|
|
└── output/ # Report generation, visualizations
|
|
```
|
|
|
|
### DuckDB Tables
|
|
|
|
| Table | Source | Score Column |
|
|
|-------|--------|-------------|
|
|
| `gene_universe` | mygene | — |
|
|
| `gnomad_constraint` | gnomAD v4.1 | `loeuf_normalized` |
|
|
| `tissue_expression` | HPA v23 + GTEx v8 | `expression_score_normalized` |
|
|
| `gene_annotation` | GO/InterPro/Reactome | `annotation_score_normalized` |
|
|
| `subcellular_localization` | HPA + proteomics | `localization_score_normalized` |
|
|
| `animal_model_phenotypes` | MGI/ZFIN/IMPC via HCOP | `animal_model_score_normalized` |
|
|
| `literature_evidence` | PubMed (NCBI E-utils) | `literature_score_normalized` |
|
|
|
|
### Scoring Weights (config/default.yaml)
|
|
|
|
gnomAD: 0.20, Expression: 0.20, Annotation: 0.15, Localization: 0.15, Animal Model: 0.15, Literature: 0.15
|
|
|
|
### Known Limitations
|
|
|
|
- **gnomAD gene_id alignment**: gnomAD uses transcript-level IDs; join to gene_universe may produce NaN scores for some genes.
|
|
- **GTEx v8 lacks retina tissue**: "Eye - Retina" not available; retina expression comes only from HPA.
|
|
- **HPA expression merge gap**: HPA uses gene_symbol while pipeline keys on gene_id; the join in `expression/transform.py` may miss genes without symbol mapping.
|
|
- **Literature layer is slow**: ~8 genes/minute via NCBI E-utilities; full run takes ~46 hours for 22K genes. Use `--api-key` for 10 req/s (vs 3 req/s default).
|
|
- **HPA URLs pinned to v23**: Using `v23.proteinatlas.org` because latest version changed download paths.
|