feat(01-01): create Python package scaffold with config system

- pyproject.toml: installable package with bioinformatics dependencies
- Pydantic config schema with validation (ensembl_release >= 100, directory creation)
- YAML config loader with override support
- Default config with Ensembl 113, gnomAD v4.1
- 5 passing tests for config validation and hashing
This commit is contained in:
2026-02-11 16:24:35 +08:00
parent cab2f5fc66
commit 4a80a0398e
8 changed files with 459 additions and 0 deletions

25
config/default.yaml Normal file
View File

@@ -0,0 +1,25 @@
# Default pipeline configuration
data_dir: data
cache_dir: data/cache
duckdb_path: data/pipeline.duckdb
versions:
ensembl_release: 113
gnomad_version: v4.1
gtex_version: v8
hpa_version: "23.0"
api:
rate_limit_per_second: 5
max_retries: 5
cache_ttl_seconds: 86400
timeout_seconds: 30
scoring:
gnomad: 0.20
expression: 0.20
annotation: 0.15
localization: 0.15
animal_model: 0.15
literature: 0.15

55
pyproject.toml Normal file
View File

@@ -0,0 +1,55 @@
[build-system]
requires = ["setuptools>=61.0", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "usher-pipeline"
version = "0.1.0"
description = "Reproducible pipeline for discovering under-studied cilia/Usher candidate genes"
requires-python = ">=3.11"
authors = [
{name = "Research Team"}
]
readme = "README.md"
license = {text = "MIT"}
classifiers = [
"Development Status :: 3 - Alpha",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering :: Bio-Informatics",
]
dependencies = [
"mygene>=3.2.0",
"requests>=2.31.0",
"requests-cache>=1.1.0",
"tenacity>=8.2.0",
"pydantic>=2.0",
"pydantic-yaml>=1.2.0",
"duckdb>=0.9.0",
"click>=8.1.0",
"polars>=0.19.0",
"pyarrow>=14.0.0",
"pyyaml>=6.0",
]
[project.optional-dependencies]
dev = [
"pytest>=7.4.0",
"pytest-cov>=4.1.0",
]
[project.scripts]
usher-pipeline = "usher_pipeline.cli:main"
[tool.setuptools]
packages = ["usher_pipeline"]
package-dir = {"" = "src"}
[tool.pytest.ini_options]
testpaths = ["tests"]
python_files = ["test_*.py"]
python_functions = ["test_*"]
addopts = "-v --strict-markers"

View File

@@ -0,0 +1 @@
__version__ = "0.1.0"

View File

@@ -0,0 +1,11 @@
from .loader import load_config, load_config_with_overrides
from .schema import PipelineConfig, DataSourceVersions, ScoringWeights, APIConfig
__all__ = [
"load_config",
"load_config_with_overrides",
"PipelineConfig",
"DataSourceVersions",
"ScoringWeights",
"APIConfig",
]

View File

@@ -0,0 +1,81 @@
"""Configuration loading with YAML parsing and validation."""
from pathlib import Path
from typing import Any
import pydantic_yaml
from .schema import PipelineConfig
def load_config(config_path: Path | str) -> PipelineConfig:
"""
Load and validate pipeline configuration from YAML file.
Args:
config_path: Path to YAML configuration file
Returns:
Validated PipelineConfig instance
Raises:
FileNotFoundError: If config file doesn't exist
pydantic.ValidationError: If config is invalid
"""
config_path = Path(config_path)
if not config_path.exists():
raise FileNotFoundError(f"Config file not found: {config_path}")
# Read YAML file
with open(config_path, "r") as f:
yaml_content = f.read()
# Parse and validate with Pydantic
config = pydantic_yaml.parse_yaml_raw_as(PipelineConfig, yaml_content)
return config
def load_config_with_overrides(
config_path: Path | str,
overrides: dict[str, Any],
) -> PipelineConfig:
"""
Load config from YAML and apply dictionary overrides.
Useful for CLI flags that override config file values.
Args:
config_path: Path to YAML configuration file
overrides: Dictionary of values to override (nested keys supported)
Returns:
Validated PipelineConfig with overrides applied
Raises:
FileNotFoundError: If config file doesn't exist
pydantic.ValidationError: If final config is invalid
"""
# Load base config
config = load_config(config_path)
# Convert to dict, apply overrides, re-validate
config_dict = config.model_dump()
# Apply overrides (simple flat merge for now)
for key, value in overrides.items():
if "." in key:
# Handle nested keys like "api.rate_limit_per_second"
parts = key.split(".")
target = config_dict
for part in parts[:-1]:
target = target[part]
target[parts[-1]] = value
else:
config_dict[key] = value
# Re-validate with overrides applied
config = PipelineConfig.model_validate(config_dict)
return config

View File

@@ -0,0 +1,150 @@
"""Pydantic models for pipeline configuration."""
import hashlib
import json
from pathlib import Path
from typing import Any
from pydantic import BaseModel, Field, field_validator
class DataSourceVersions(BaseModel):
"""Version information for external data sources."""
ensembl_release: int = Field(
...,
ge=100,
description="Ensembl release number (must be >= 100)",
)
gnomad_version: str = Field(
default="v4.1",
description="gnomAD version",
)
gtex_version: str = Field(
default="v8",
description="GTEx version",
)
hpa_version: str = Field(
default="23.0",
description="Human Protein Atlas version",
)
class ScoringWeights(BaseModel):
"""Weights for multi-evidence scoring layers."""
gnomad: float = Field(
default=0.20,
ge=0.0,
le=1.0,
description="Weight for genetic constraint evidence",
)
expression: float = Field(
default=0.20,
ge=0.0,
le=1.0,
description="Weight for tissue expression evidence",
)
annotation: float = Field(
default=0.15,
ge=0.0,
le=1.0,
description="Weight for annotation completeness",
)
localization: float = Field(
default=0.15,
ge=0.0,
le=1.0,
description="Weight for subcellular localization evidence",
)
animal_model: float = Field(
default=0.15,
ge=0.0,
le=1.0,
description="Weight for animal model phenotype evidence",
)
literature: float = Field(
default=0.15,
ge=0.0,
le=1.0,
description="Weight for literature evidence",
)
class APIConfig(BaseModel):
"""Configuration for API clients."""
rate_limit_per_second: int = Field(
default=5,
ge=1,
description="Maximum API requests per second",
)
max_retries: int = Field(
default=5,
ge=1,
le=20,
description="Maximum retry attempts for failed requests",
)
cache_ttl_seconds: int = Field(
default=86400,
ge=0,
description="Cache time-to-live in seconds (0 = infinite)",
)
timeout_seconds: int = Field(
default=30,
ge=1,
description="Request timeout in seconds",
)
class PipelineConfig(BaseModel):
"""Main pipeline configuration."""
data_dir: Path = Field(
...,
description="Directory for storing downloaded data",
)
cache_dir: Path = Field(
...,
description="Directory for API response caching",
)
duckdb_path: Path = Field(
...,
description="Path to DuckDB database file",
)
versions: DataSourceVersions = Field(
...,
description="Data source version information",
)
api: APIConfig = Field(
...,
description="API client configuration",
)
scoring: ScoringWeights = Field(
...,
description="Scoring weights for evidence layers",
)
@field_validator("data_dir", "cache_dir")
@classmethod
def create_directory(cls, v: Path) -> Path:
"""Create directory if it doesn't exist."""
v.mkdir(parents=True, exist_ok=True)
return v
def config_hash(self) -> str:
"""
Compute SHA-256 hash of the configuration.
Returns a deterministic hash based on all config values,
useful for tracking config changes and cache invalidation.
"""
# Convert config to dict and serialize deterministically
config_dict = self.model_dump(mode="python")
# Convert Path objects to strings for JSON serialization
config_json = json.dumps(
config_dict,
sort_keys=True,
default=str,
)
return hashlib.sha256(config_json.encode()).hexdigest()

1
tests/__init__.py Normal file
View File

@@ -0,0 +1 @@
# Tests package

135
tests/test_config.py Normal file
View File

@@ -0,0 +1,135 @@
"""Tests for configuration loading and validation."""
from pathlib import Path
import pytest
from pydantic import ValidationError
from usher_pipeline.config import load_config, load_config_with_overrides
from usher_pipeline.config.schema import PipelineConfig
def test_load_valid_config():
"""Test loading valid default configuration."""
config = load_config("config/default.yaml")
assert isinstance(config, PipelineConfig)
assert config.versions.ensembl_release == 113
assert config.versions.gnomad_version == "v4.1"
assert config.api.rate_limit_per_second == 5
assert config.api.max_retries == 5
assert config.scoring.gnomad == 0.20
def test_invalid_config_missing_field(tmp_path):
"""Test that missing required field raises ValidationError."""
invalid_config = tmp_path / "invalid.yaml"
invalid_config.write_text("""
versions:
ensembl_release: 113
api:
rate_limit_per_second: 5
scoring:
gnomad: 0.20
""")
with pytest.raises(ValidationError) as exc_info:
load_config(invalid_config)
# Check that error mentions missing field
assert "data_dir" in str(exc_info.value)
def test_invalid_ensembl_release(tmp_path):
"""Test that ensembl_release < 100 raises ValidationError."""
invalid_config = tmp_path / "invalid_ensembl.yaml"
invalid_config.write_text("""
data_dir: data
cache_dir: data/cache
duckdb_path: data/pipeline.duckdb
versions:
ensembl_release: 99
gnomad_version: v4.1
api:
rate_limit_per_second: 5
max_retries: 5
cache_ttl_seconds: 86400
timeout_seconds: 30
scoring:
gnomad: 0.20
expression: 0.20
annotation: 0.15
localization: 0.15
animal_model: 0.15
literature: 0.15
""")
with pytest.raises(ValidationError) as exc_info:
load_config(invalid_config)
# Check that error mentions ensembl_release constraint
error_str = str(exc_info.value)
assert "ensembl_release" in error_str
assert "greater than or equal to 100" in error_str.lower() or "100" in error_str
def test_config_hash_deterministic():
"""Test that config hash is deterministic and changes with config."""
config1 = load_config("config/default.yaml")
config2 = load_config("config/default.yaml")
# Same config should produce same hash
assert config1.config_hash() == config2.config_hash()
# Hash should be SHA-256 (64 hex chars)
assert len(config1.config_hash()) == 64
# Different config should produce different hash
config3 = load_config_with_overrides(
"config/default.yaml",
{"api.rate_limit_per_second": 10},
)
assert config3.config_hash() != config1.config_hash()
def test_config_creates_directories(tmp_path):
"""Test that loading config creates data and cache directories."""
config_file = tmp_path / "test_config.yaml"
# Use non-existent directories
data_dir = tmp_path / "test_data"
cache_dir = tmp_path / "test_cache"
config_file.write_text(f"""
data_dir: {data_dir}
cache_dir: {cache_dir}
duckdb_path: {tmp_path / "test.duckdb"}
versions:
ensembl_release: 113
gnomad_version: v4.1
api:
rate_limit_per_second: 5
max_retries: 5
cache_ttl_seconds: 86400
timeout_seconds: 30
scoring:
gnomad: 0.20
expression: 0.20
annotation: 0.15
localization: 0.15
animal_model: 0.15
literature: 0.15
""")
# Directories should not exist before loading
assert not data_dir.exists()
assert not cache_dir.exists()
# Load config
config = load_config(config_file)
# Directories should be created
assert data_dir.exists()
assert cache_dir.exists()
assert data_dir.is_dir()
assert cache_dir.is_dir()