Files
novelty-seeking/backend/app/services/embedding_service.py
gbanyan bc281b8e0a feat: Add Deduplication Agent with embedding and LLM methods
Implement a new Deduplication Agent that identifies and groups similar
transformation descriptions. Supports two deduplication methods:
- Embedding: Fast vector similarity comparison using cosine similarity
- LLM: Accurate pairwise semantic comparison (slower but more precise)

Backend changes:
- Add deduplication router with /deduplicate endpoint
- Add embedding_service for vector-based similarity
- Add llm_deduplication_service for LLM-based comparison
- Improve expert_transformation error handling and progress reporting

Frontend changes:
- Add DeduplicationPanel with interactive group visualization
- Add useDeduplication hook for state management
- Integrate deduplication tab in main App
- Add threshold slider and method selector in sidebar

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-22 20:26:17 +08:00

251 lines
8.1 KiB
Python

"""
Embedding Service - generates embeddings and performs similarity-based deduplication
使用 Ollama 的 embedding 端點生成向量,並透過餘弦相似度進行去重分組。
"""
import logging
from typing import List, Optional
import httpx
import numpy as np
from ..config import settings
from ..models.schemas import (
ExpertTransformationDescription,
DeduplicationResult,
DeduplicationMethod,
DescriptionGroup,
)
logger = logging.getLogger(__name__)
class EmbeddingService:
"""Embedding 服務:生成向量並執行相似度去重"""
def __init__(self):
self.base_url = settings.ollama_base_url
self.default_model = "nomic-embed-text" # Ollama 預設的 embedding 模型
self.client = httpx.AsyncClient(timeout=120.0)
async def get_embedding(self, text: str, model: Optional[str] = None) -> List[float]:
"""取得單一文字的 embedding 向量"""
model = model or self.default_model
url = f"{self.base_url}/api/embed"
try:
response = await self.client.post(url, json={
"model": model,
"input": text
})
response.raise_for_status()
result = response.json()
return result["embeddings"][0]
except httpx.HTTPStatusError as e:
logger.error(f"Embedding API error: {e.response.status_code} - {e.response.text}")
raise
except Exception as e:
logger.error(f"Embedding error: {e}")
raise
async def get_embeddings_batch(
self,
texts: List[str],
model: Optional[str] = None
) -> List[List[float]]:
"""批次取得多個文字的 embedding 向量"""
if not texts:
return []
model = model or self.default_model
url = f"{self.base_url}/api/embed"
try:
# Ollama 支援批次 embedding
response = await self.client.post(url, json={
"model": model,
"input": texts
})
response.raise_for_status()
result = response.json()
return result["embeddings"]
except httpx.HTTPStatusError as e:
logger.error(f"Batch embedding API error: {e.response.status_code} - {e.response.text}")
# 如果批次失敗,嘗試逐一處理
logger.info("Falling back to single embedding requests...")
embeddings = []
for text in texts:
emb = await self.get_embedding(text, model)
embeddings.append(emb)
return embeddings
except Exception as e:
logger.error(f"Batch embedding error: {e}")
raise
def cosine_similarity(self, a: List[float], b: List[float]) -> float:
"""計算兩個向量的餘弦相似度"""
a_np = np.array(a)
b_np = np.array(b)
norm_a = np.linalg.norm(a_np)
norm_b = np.linalg.norm(b_np)
if norm_a == 0 or norm_b == 0:
return 0.0
return float(np.dot(a_np, b_np) / (norm_a * norm_b))
def build_similarity_matrix(
self,
embeddings: List[List[float]]
) -> np.ndarray:
"""建立成對相似度矩陣"""
n = len(embeddings)
matrix = np.zeros((n, n))
for i in range(n):
matrix[i][i] = 1.0 # 自己與自己的相似度為 1
for j in range(i + 1, n):
sim = self.cosine_similarity(embeddings[i], embeddings[j])
matrix[i][j] = sim
matrix[j][i] = sim
return matrix
def cluster_by_similarity(
self,
similarity_matrix: np.ndarray,
threshold: float
) -> List[List[int]]:
"""
貪婪聚類:將相似度 >= threshold 的項目分組
演算法:
1. 從第一個未分配的項目開始
2. 找出所有與該項目相似度 >= threshold 的項目
3. 歸入同一組
4. 重複直到所有項目都已分配
Returns:
List[List[int]]: 每個子列表包含同組項目的索引
"""
n = len(similarity_matrix)
assigned = [False] * n
groups = []
for i in range(n):
if assigned[i]:
continue
# 開始新的分組,以 item i 為代表
group = [i]
assigned[i] = True
# 找出所有與 i 相似的項目
for j in range(i + 1, n):
if not assigned[j] and similarity_matrix[i][j] >= threshold:
group.append(j)
assigned[j] = True
groups.append(group)
return groups
async def deduplicate(
self,
descriptions: List[ExpertTransformationDescription],
threshold: float = 0.85,
model: Optional[str] = None
) -> DeduplicationResult:
"""
主要去重方法
Args:
descriptions: 要去重的描述列表
threshold: 相似度閾值 (0.0-1.0),預設 0.85
model: Embedding 模型名稱
Returns:
DeduplicationResult: 去重結果,包含分組資訊
"""
model = model or self.default_model
# 空輸入處理
if not descriptions:
return DeduplicationResult(
total_input=0,
total_groups=0,
total_duplicates=0,
groups=[],
threshold_used=threshold,
method_used=DeduplicationMethod.EMBEDDING,
model_used=model
)
# 提取描述文字
texts = [d.description for d in descriptions]
logger.info(f"Generating embeddings for {len(texts)} descriptions using model '{model}'...")
# 批次取得 embeddings
try:
embeddings = await self.get_embeddings_batch(texts, model)
except Exception as e:
logger.error(f"Failed to generate embeddings: {e}")
raise ValueError(f"Embedding generation failed: {e}. Make sure the model '{model}' is installed (run: ollama pull {model})")
# 建立相似度矩陣
logger.info("Building similarity matrix...")
sim_matrix = self.build_similarity_matrix(embeddings)
# 聚類
logger.info(f"Clustering with threshold {threshold}...")
clusters = self.cluster_by_similarity(sim_matrix, threshold)
# 建立結果分組
result_groups = []
total_duplicates = 0
for group_idx, indices in enumerate(clusters):
if len(indices) == 1:
# 獨立項目 - 無重複
result_groups.append(DescriptionGroup(
group_id=f"group-{group_idx}",
representative=descriptions[indices[0]],
duplicates=[],
similarity_scores=[]
))
else:
# 有重複的分組 - 第一個為代表
rep_idx = indices[0]
dup_indices = indices[1:]
dup_scores = [
float(sim_matrix[rep_idx][idx])
for idx in dup_indices
]
result_groups.append(DescriptionGroup(
group_id=f"group-{group_idx}",
representative=descriptions[rep_idx],
duplicates=[descriptions[idx] for idx in dup_indices],
similarity_scores=dup_scores
))
total_duplicates += len(dup_indices)
logger.info(f"Deduplication complete: {len(descriptions)} -> {len(result_groups)} groups, {total_duplicates} duplicates found")
return DeduplicationResult(
total_input=len(descriptions),
total_groups=len(result_groups),
total_duplicates=total_duplicates,
groups=result_groups,
threshold_used=threshold,
method_used=DeduplicationMethod.EMBEDDING,
model_used=model
)
async def close(self):
"""關閉 HTTP 客戶端"""
await self.client.aclose()
# 全域實例
embedding_service = EmbeddingService()