Files
novelty-seeking/backend/app/routers/attributes.py
gbanyan 1ed1dab78f feat: Migrate to React Flow and add Fixed + Dynamic category mode
Frontend:
- Migrate MindmapDAG from D3.js to React Flow (@xyflow/react)
- Add custom node components (QueryNode, CategoryHeaderNode, AttributeNode)
- Add useDAGLayout hook for column-based layout
- Add "AI" badge for LLM-suggested categories
- Update CategorySelector with Fixed + Dynamic mode option
- Improve dark/light theme support

Backend:
- Add FIXED_PLUS_DYNAMIC category mode
- Filter duplicate category names in LLM suggestions
- Update prompts to exclude fixed categories when suggesting new ones
- Improve LLM service with better error handling and logging
- Auto-remove /no_think prefix for non-Qwen models
- Add smart JSON format detection for model compatibility
- Improve JSON extraction with multiple parsing strategies

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-03 01:22:57 +08:00

408 lines
14 KiB
Python

import json
import logging
from typing import AsyncGenerator, List
from fastapi import APIRouter, HTTPException
from fastapi.responses import StreamingResponse
from ..models.schemas import (
ModelListResponse,
StreamAnalyzeRequest,
Step1Result,
CausalChain,
AttributeNode,
CategoryMode,
CategoryDefinition,
Step0Result,
DynamicStep1Result,
DynamicCausalChain,
DAGNode,
DAGEdge,
AttributeDAG,
DAGRelationship,
)
from ..prompts.attribute_prompt import (
get_step1_attributes_prompt,
get_step2_causal_chain_prompt,
get_step0_category_analysis_prompt,
get_step1_dynamic_attributes_prompt,
get_step2_dynamic_causal_chain_prompt,
get_step2_dag_relationships_prompt,
)
from ..services.llm_service import ollama_provider, extract_json_from_response
logger = logging.getLogger(__name__)
router = APIRouter(prefix="/api", tags=["attributes"])
# Fixed categories definition
FIXED_CATEGORIES = [
CategoryDefinition(name="材料", description="物件材料", is_fixed=True, order=0),
CategoryDefinition(name="功能", description="物件功能", is_fixed=True, order=1),
CategoryDefinition(name="用途", description="使用場景", is_fixed=True, order=2),
CategoryDefinition(name="使用族群", description="目標用戶", is_fixed=True, order=3),
]
async def execute_step0(
request: StreamAnalyzeRequest,
exclude_categories: List[str] | None = None
) -> Step0Result | None:
"""Execute Step 0 - LLM category analysis
Called only for modes that need LLM to suggest categories:
- FIXED_PLUS_DYNAMIC
- CUSTOM_ONLY
- DYNAMIC_AUTO
"""
prompt = get_step0_category_analysis_prompt(
request.query,
request.suggested_category_count,
exclude_categories=exclude_categories
)
temperature = request.temperature if request.temperature is not None else 0.7
response = await ollama_provider.generate(
prompt, model=request.model, temperature=temperature
)
data = extract_json_from_response(response)
step0_result = Step0Result(**data)
# Mark as LLM generated
for cat in step0_result.categories:
cat.is_fixed = False
return step0_result
def resolve_final_categories(
request: StreamAnalyzeRequest,
step0_result: Step0Result | None
) -> List[CategoryDefinition]:
"""Determine final categories based on mode"""
if request.category_mode == CategoryMode.FIXED_ONLY:
return FIXED_CATEGORIES
elif request.category_mode == CategoryMode.FIXED_PLUS_CUSTOM:
categories = FIXED_CATEGORIES.copy()
if request.custom_categories:
for i, name in enumerate(request.custom_categories):
categories.append(
CategoryDefinition(
name=name, is_fixed=False,
order=len(FIXED_CATEGORIES) + i
)
)
return categories
elif request.category_mode == CategoryMode.FIXED_PLUS_DYNAMIC:
# Fixed categories + LLM suggested categories
categories = [
CategoryDefinition(
name=cat.name,
description=cat.description,
is_fixed=True,
order=i
)
for i, cat in enumerate(FIXED_CATEGORIES)
]
if step0_result:
# Filter out LLM categories that duplicate fixed category names
fixed_names = {cat.name for cat in FIXED_CATEGORIES}
added_count = 0
for cat in step0_result.categories:
if cat.name not in fixed_names:
categories.append(
CategoryDefinition(
name=cat.name,
description=cat.description,
is_fixed=False,
order=len(FIXED_CATEGORIES) + added_count
)
)
added_count += 1
return categories
elif request.category_mode == CategoryMode.CUSTOM_ONLY:
return step0_result.categories if step0_result else FIXED_CATEGORIES
elif request.category_mode == CategoryMode.DYNAMIC_AUTO:
return step0_result.categories if step0_result else FIXED_CATEGORIES
return FIXED_CATEGORIES
def assemble_dynamic_attribute_tree(
query: str,
chains: List[DynamicCausalChain],
categories: List[CategoryDefinition]
) -> AttributeNode:
"""Assemble dynamic N-level tree from causal chains"""
sorted_cats = sorted(categories, key=lambda x: x.order)
if not chains:
return AttributeNode(name=query, children=[])
def build_recursive(
level: int,
parent_path: dict,
remaining_chains: List[DynamicCausalChain]
) -> List[AttributeNode]:
if level >= len(sorted_cats):
return []
current_cat = sorted_cats[level]
grouped = {}
for chain in remaining_chains:
# Check if this chain matches the parent path
if all(chain.chain.get(k) == v for k, v in parent_path.items()):
attr_val = chain.chain.get(current_cat.name)
if attr_val:
if attr_val not in grouped:
grouped[attr_val] = []
grouped[attr_val].append(chain)
nodes = []
for attr_val, child_chains in grouped.items():
new_path = {**parent_path, current_cat.name: attr_val}
children = build_recursive(level + 1, new_path, child_chains)
node = AttributeNode(
name=attr_val,
category=current_cat.name,
children=children if children else None
)
nodes.append(node)
return nodes
root_children = build_recursive(0, {}, chains)
return AttributeNode(name=query, children=root_children)
def assemble_attribute_tree(query: str, chains: List[CausalChain]) -> AttributeNode:
"""將因果鏈組裝成樹狀結構"""
# 以材料為第一層分組
material_map = {}
for chain in chains:
if chain.material not in material_map:
material_map[chain.material] = []
material_map[chain.material].append(chain)
# 構建樹狀結構
root = AttributeNode(name=query, children=[])
for material, material_chains in material_map.items():
material_node = AttributeNode(name=material, category="材料", children=[])
# 以功能為第二層分組
function_map = {}
for chain in material_chains:
if chain.function not in function_map:
function_map[chain.function] = []
function_map[chain.function].append(chain)
for function, function_chains in function_map.items():
function_node = AttributeNode(name=function, category="功能", children=[])
# 以用途為第三層分組
usage_map = {}
for chain in function_chains:
if chain.usage not in usage_map:
usage_map[chain.usage] = []
usage_map[chain.usage].append(chain)
for usage, usage_chains in usage_map.items():
usage_node = AttributeNode(
name=usage,
category="用途",
children=[
AttributeNode(name=c.user, category="使用族群")
for c in usage_chains
],
)
function_node.children.append(usage_node)
material_node.children.append(function_node)
root.children.append(material_node)
return root
def build_dag_from_relationships(
query: str,
categories: List[CategoryDefinition],
attributes_by_category: dict,
relationships: List[DAGRelationship],
) -> AttributeDAG:
"""從屬性和關係建構 DAG"""
sorted_cats = sorted(categories, key=lambda x: x.order)
# 建立節點 - 每個屬性只出現一次
nodes: List[DAGNode] = []
node_id_map: dict = {} # (category, name) -> id
for cat in sorted_cats:
cat_name = cat.name
for idx, attr_name in enumerate(attributes_by_category.get(cat_name, [])):
node_id = f"{cat_name}_{idx}"
nodes.append(DAGNode(
id=node_id,
name=attr_name,
category=cat_name,
order=idx
))
node_id_map[(cat_name, attr_name)] = node_id
# 建立邊
edges: List[DAGEdge] = []
for rel in relationships:
source_key = (rel.source_category, rel.source)
target_key = (rel.target_category, rel.target)
if source_key in node_id_map and target_key in node_id_map:
edges.append(DAGEdge(
source_id=node_id_map[source_key],
target_id=node_id_map[target_key]
))
return AttributeDAG(
query=query,
categories=sorted_cats,
nodes=nodes,
edges=edges
)
async def generate_sse_events(request: StreamAnalyzeRequest) -> AsyncGenerator[str, None]:
"""Generate SSE events with dynamic category support"""
try:
temperature = request.temperature if request.temperature is not None else 0.7
# ========== Step 0: Category Analysis (if needed) ==========
# Only these modes need LLM category analysis
needs_step0 = request.category_mode in [
CategoryMode.FIXED_PLUS_DYNAMIC,
CategoryMode.CUSTOM_ONLY,
CategoryMode.DYNAMIC_AUTO,
]
step0_result = None
if needs_step0:
yield f"event: step0_start\ndata: {json.dumps({'message': '分析類別...'}, ensure_ascii=False)}\n\n"
# For FIXED_PLUS_DYNAMIC, exclude the fixed category names
exclude_cats = None
if request.category_mode == CategoryMode.FIXED_PLUS_DYNAMIC:
exclude_cats = [cat.name for cat in FIXED_CATEGORIES]
step0_result = await execute_step0(request, exclude_categories=exclude_cats)
if step0_result:
yield f"event: step0_complete\ndata: {json.dumps({'result': step0_result.model_dump()}, ensure_ascii=False)}\n\n"
# ========== Resolve Final Categories ==========
final_categories = resolve_final_categories(request, step0_result)
yield f"event: categories_resolved\ndata: {json.dumps({'categories': [c.model_dump() for c in final_categories]}, ensure_ascii=False)}\n\n"
# ========== Step 1: Generate Attributes (Dynamic) ==========
yield f"event: step1_start\ndata: {json.dumps({'message': '生成屬性...'}, ensure_ascii=False)}\n\n"
step1_prompt = get_step1_dynamic_attributes_prompt(request.query, final_categories)
logger.info(f"Step 1 prompt: {step1_prompt[:200]}")
step1_response = await ollama_provider.generate(
step1_prompt, model=request.model, temperature=temperature
)
logger.info(f"Step 1 response: {step1_response[:500]}")
step1_data = extract_json_from_response(step1_response)
step1_result = DynamicStep1Result(attributes=step1_data)
yield f"event: step1_complete\ndata: {json.dumps({'result': step1_result.model_dump()}, ensure_ascii=False)}\n\n"
# ========== Step 2: Generate Relationships (DAG) ==========
yield f"event: relationships_start\ndata: {json.dumps({'message': '生成關係...'}, ensure_ascii=False)}\n\n"
step2_prompt = get_step2_dag_relationships_prompt(
query=request.query,
categories=final_categories,
attributes_by_category=step1_result.attributes,
)
logger.info(f"Step 2 (relationships) prompt: {step2_prompt[:300]}")
relationships: List[DAGRelationship] = []
max_retries = 2
for attempt in range(max_retries):
try:
step2_response = await ollama_provider.generate(
step2_prompt, model=request.model, temperature=temperature
)
logger.info(f"Relationships response: {step2_response[:500]}")
rel_data = extract_json_from_response(step2_response)
raw_relationships = rel_data.get("relationships", [])
for rel in raw_relationships:
relationships.append(DAGRelationship(
source_category=rel.get("source_category", ""),
source=rel.get("source", ""),
target_category=rel.get("target_category", ""),
target=rel.get("target", ""),
))
break
except Exception as e:
logger.warning(f"Relationships attempt {attempt + 1} failed: {e}")
if attempt < max_retries - 1:
temperature = min(temperature + 0.1, 1.0)
yield f"event: relationships_complete\ndata: {json.dumps({'count': len(relationships)}, ensure_ascii=False)}\n\n"
# ========== Build DAG ==========
dag = build_dag_from_relationships(
query=request.query,
categories=final_categories,
attributes_by_category=step1_result.attributes,
relationships=relationships,
)
final_result = {
"query": request.query,
"step0_result": step0_result.model_dump() if step0_result else None,
"categories_used": [c.model_dump() for c in final_categories],
"step1_result": step1_result.model_dump(),
"relationships": [r.model_dump() for r in relationships],
"dag": dag.model_dump(),
}
yield f"event: done\ndata: {json.dumps(final_result, ensure_ascii=False)}\n\n"
except Exception as e:
logger.error(f"SSE generation error: {e}")
yield f"event: error\ndata: {json.dumps({'error': str(e)}, ensure_ascii=False)}\n\n"
@router.post("/analyze")
async def analyze_stream(request: StreamAnalyzeRequest):
"""多步驟分析 with SSE streaming"""
return StreamingResponse(
generate_sse_events(request),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)
@router.get("/models", response_model=ModelListResponse)
async def list_models():
"""List available LLM models."""
try:
models = await ollama_provider.list_models()
return ModelListResponse(models=models)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))