- Backend: Add expert transformation router with 3-step SSE pipeline - Step 0: Generate diverse expert team (random domains) - Step 1: Each expert generates keywords for attributes - Step 2: Batch generate descriptions for expert keywords - Backend: Add simplified prompts for reliable JSON output - Frontend: Add TransformationPanel with React Flow visualization - Frontend: Add TransformationInputPanel for expert configuration - Expert count (2-8), keywords per expert (1-3) - Custom expert domains support - Frontend: Add expert keyword nodes with expert badges - Frontend: Improve description card layout (wider cards, more spacing) - Frontend: Add fallback for missing descriptions with visual indicators 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
223 lines
6.2 KiB
Python
223 lines
6.2 KiB
Python
from pydantic import BaseModel
|
||
from typing import Optional, List, Dict
|
||
from enum import Enum
|
||
|
||
|
||
class AttributeNode(BaseModel):
|
||
name: str
|
||
category: Optional[str] = None # 材料, 功能, 用途, 使用族群
|
||
children: Optional[List["AttributeNode"]] = None
|
||
|
||
|
||
AttributeNode.model_rebuild()
|
||
|
||
|
||
class AnalyzeRequest(BaseModel):
|
||
query: str
|
||
model: Optional[str] = None
|
||
temperature: Optional[float] = 0.7
|
||
categories: Optional[List[str]] = None # 如果為 None,使用預設類別
|
||
|
||
|
||
class AnalyzeResponse(BaseModel):
|
||
query: str
|
||
attributes: AttributeNode
|
||
|
||
|
||
class ModelListResponse(BaseModel):
|
||
models: List[str]
|
||
|
||
|
||
# ===== Multi-step streaming schemas =====
|
||
|
||
class Step1Result(BaseModel):
|
||
"""Step 1 的結果:各類別屬性列表"""
|
||
materials: List[str]
|
||
functions: List[str]
|
||
usages: List[str]
|
||
users: List[str]
|
||
|
||
|
||
class CausalChain(BaseModel):
|
||
"""單條因果鏈"""
|
||
material: str
|
||
function: str
|
||
usage: str
|
||
user: str
|
||
|
||
|
||
class StreamAnalyzeRequest(BaseModel):
|
||
"""多步驟分析請求(更新為支持動態類別)"""
|
||
query: str
|
||
model: Optional[str] = None
|
||
temperature: Optional[float] = 0.7
|
||
chain_count: int = 5 # 用戶可設定要生成多少條因果鏈
|
||
|
||
# 新增:動態類別支持
|
||
category_mode: Optional[str] = "dynamic_auto" # CategoryMode enum 值
|
||
custom_categories: Optional[List[str]] = None
|
||
suggested_category_count: int = 3 # 建議 LLM 生成的類別數量
|
||
|
||
|
||
class StreamAnalyzeResponse(BaseModel):
|
||
"""最終完整結果"""
|
||
query: str
|
||
step1_result: Step1Result
|
||
causal_chains: List[CausalChain]
|
||
attributes: AttributeNode
|
||
|
||
|
||
# ===== Dynamic category system schemas =====
|
||
|
||
class CategoryMode(str, Enum):
|
||
"""類別模式"""
|
||
FIXED_ONLY = "fixed_only"
|
||
FIXED_PLUS_CUSTOM = "fixed_plus_custom"
|
||
FIXED_PLUS_DYNAMIC = "fixed_plus_dynamic" # Fixed + LLM suggested
|
||
CUSTOM_ONLY = "custom_only"
|
||
DYNAMIC_AUTO = "dynamic_auto"
|
||
|
||
|
||
class CategoryDefinition(BaseModel):
|
||
"""類別定義"""
|
||
name: str
|
||
description: Optional[str] = None
|
||
is_fixed: bool = True # LLM 生成的為 False
|
||
order: int = 0
|
||
|
||
|
||
class Step0Result(BaseModel):
|
||
"""Step 0: LLM 分析建議類別"""
|
||
categories: List[CategoryDefinition]
|
||
|
||
|
||
class DynamicStep1Result(BaseModel):
|
||
"""動態版本的 Step 1 結果"""
|
||
attributes: Dict[str, List[str]] # {類別名: [屬性列表]}
|
||
|
||
|
||
class DynamicCausalChain(BaseModel):
|
||
"""動態版本的因果鏈"""
|
||
chain: Dict[str, str] # {類別名: 選中屬性}
|
||
|
||
|
||
# ===== DAG (Directed Acyclic Graph) schemas =====
|
||
|
||
class DAGNode(BaseModel):
|
||
"""DAG 節點 - 每個屬性只出現一次"""
|
||
id: str # 唯一 ID: "{category}_{index}"
|
||
name: str # 顯示名稱
|
||
category: str # 所屬類別
|
||
order: int # 欄位內位置
|
||
|
||
|
||
class DAGEdge(BaseModel):
|
||
"""DAG 邊 - 節點之間的連接"""
|
||
source_id: str
|
||
target_id: str
|
||
|
||
|
||
class AttributeDAG(BaseModel):
|
||
"""完整 DAG 結構"""
|
||
query: str
|
||
categories: List[CategoryDefinition]
|
||
nodes: List[DAGNode]
|
||
edges: List[DAGEdge]
|
||
|
||
|
||
class DAGRelationship(BaseModel):
|
||
"""Step 2 輸出 - 單一關係"""
|
||
source_category: str
|
||
source: str # source attribute name
|
||
target_category: str
|
||
target: str # target attribute name
|
||
|
||
|
||
# ===== Transformation Agent schemas =====
|
||
|
||
class TransformationRequest(BaseModel):
|
||
"""Transformation Agent 請求"""
|
||
query: str # 原始查詢 (e.g., "腳踏車")
|
||
category: str # 類別名稱 (e.g., "功能")
|
||
attributes: List[str] # 該類別的屬性列表
|
||
model: Optional[str] = None
|
||
temperature: Optional[float] = 0.7
|
||
keyword_count: int = 3 # 要生成的新關鍵字數量
|
||
|
||
|
||
class TransformationDescription(BaseModel):
|
||
"""單一轉換描述"""
|
||
keyword: str # 新關鍵字
|
||
description: str # 與 query 結合的描述
|
||
|
||
|
||
class TransformationCategoryResult(BaseModel):
|
||
"""單一類別的轉換結果"""
|
||
category: str
|
||
original_attributes: List[str] # 原始屬性
|
||
new_keywords: List[str] # 新生成的關鍵字
|
||
descriptions: List[TransformationDescription]
|
||
|
||
|
||
class TransformationDAGResult(BaseModel):
|
||
"""完整 Transformation 結果"""
|
||
query: str
|
||
results: List[TransformationCategoryResult]
|
||
|
||
|
||
# ===== Expert Transformation Agent schemas =====
|
||
|
||
class ExpertProfile(BaseModel):
|
||
"""專家檔案"""
|
||
id: str # e.g., "expert-0"
|
||
name: str # e.g., "藥師"
|
||
domain: str # e.g., "醫療與健康"
|
||
perspective: Optional[str] = None # e.g., "從藥物與健康管理角度思考"
|
||
|
||
|
||
class ExpertKeyword(BaseModel):
|
||
"""專家視角生成的關鍵字"""
|
||
keyword: str # 關鍵字本身
|
||
expert_id: str # 哪個專家生成的
|
||
expert_name: str # 專家名稱(冗餘,方便前端)
|
||
source_attribute: str # 來自哪個原始屬性
|
||
|
||
|
||
class ExpertTransformationDescription(BaseModel):
|
||
"""專家關鍵字的描述"""
|
||
keyword: str
|
||
expert_id: str
|
||
expert_name: str
|
||
description: str
|
||
|
||
|
||
class ExpertTransformationCategoryResult(BaseModel):
|
||
"""單一類別的轉換結果(專家版)"""
|
||
category: str
|
||
original_attributes: List[str]
|
||
expert_keywords: List[ExpertKeyword] # 所有專家生成的關鍵字
|
||
descriptions: List[ExpertTransformationDescription]
|
||
|
||
|
||
class ExpertTransformationDAGResult(BaseModel):
|
||
"""完整轉換結果(專家版)"""
|
||
query: str
|
||
experts: List[ExpertProfile] # 使用的專家列表
|
||
results: List[ExpertTransformationCategoryResult]
|
||
|
||
|
||
class ExpertTransformationRequest(BaseModel):
|
||
"""Expert Transformation Agent 請求"""
|
||
query: str
|
||
category: str
|
||
attributes: List[str]
|
||
|
||
# Expert parameters
|
||
expert_count: int = 3 # 專家數量 (2-8)
|
||
keywords_per_expert: int = 1 # 每個專家為每個屬性生成幾個關鍵字 (1-3)
|
||
custom_experts: Optional[List[str]] = None # 用戶指定專家 ["藥師", "工程師"]
|
||
|
||
# LLM parameters
|
||
model: Optional[str] = None
|
||
temperature: Optional[float] = 0.7
|