- Add expert_cache.py: TTL-based in-memory cache (1 hour default) - Add expert_source_service.py: WikidataProvider and ConceptNetProvider - Wikidata SPARQL queries for occupations with Chinese labels - ConceptNet API queries for occupation-related concepts - Random selection from cached pool - Update schemas.py: Add ExpertSource enum (llm/wikidata/conceptnet) - Update ExpertTransformationRequest with expert_source and expert_language - Update router: Conditionally use external sources with LLM fallback - New SSE events: expert_source, expert_fallback - Update frontend types with ExpertSource 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
332 lines
10 KiB
Python
332 lines
10 KiB
Python
"""Expert 外部資料來源服務
|
||
|
||
提供從 Wikidata SPARQL 和 ConceptNet API 獲取職業/領域資料的功能。
|
||
"""
|
||
|
||
import logging
|
||
import random
|
||
from abc import ABC, abstractmethod
|
||
from typing import List, Optional, Tuple
|
||
|
||
import httpx
|
||
|
||
from .expert_cache import expert_cache
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class ExpertSourceProvider(ABC):
|
||
"""外部來源提供者抽象類"""
|
||
|
||
@abstractmethod
|
||
async def fetch_occupations(
|
||
self, count: int, language: str = "zh"
|
||
) -> List[dict]:
|
||
"""
|
||
獲取職業列表
|
||
|
||
Args:
|
||
count: 需要的職業數量
|
||
language: 語言代碼 (zh/en)
|
||
|
||
Returns:
|
||
職業資料列表 [{"name": "...", "domain": "..."}, ...]
|
||
"""
|
||
pass
|
||
|
||
|
||
class WikidataProvider(ExpertSourceProvider):
|
||
"""Wikidata SPARQL 查詢提供者"""
|
||
|
||
ENDPOINT = "https://query.wikidata.org/sparql"
|
||
|
||
def __init__(self):
|
||
self.client = httpx.AsyncClient(timeout=30.0)
|
||
|
||
async def fetch_occupations(
|
||
self, count: int, language: str = "zh"
|
||
) -> List[dict]:
|
||
"""從 Wikidata 獲取職業列表"""
|
||
cache_key = f"wikidata:{language}:occupations"
|
||
|
||
# 檢查快取
|
||
cached = expert_cache.get(cache_key)
|
||
if cached:
|
||
logger.info(f"Wikidata cache hit: {len(cached)} occupations")
|
||
return self._random_select(cached, count)
|
||
|
||
# SPARQL 查詢
|
||
query = self._build_sparql_query(language)
|
||
|
||
try:
|
||
response = await self.client.get(
|
||
self.ENDPOINT,
|
||
params={"query": query, "format": "json"},
|
||
headers={"Accept": "application/sparql-results+json"}
|
||
)
|
||
response.raise_for_status()
|
||
|
||
data = response.json()
|
||
occupations = self._parse_sparql_response(data, language)
|
||
|
||
if occupations:
|
||
expert_cache.set(cache_key, occupations)
|
||
logger.info(f"Wikidata fetched: {len(occupations)} occupations")
|
||
|
||
return self._random_select(occupations, count)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Wikidata query failed: {e}")
|
||
raise
|
||
|
||
def _build_sparql_query(self, language: str) -> str:
|
||
"""建構 SPARQL 查詢"""
|
||
lang_filter = f'FILTER(LANG(?occupationLabel) = "{language}")'
|
||
|
||
return f"""
|
||
SELECT DISTINCT ?occupation ?occupationLabel ?fieldLabel WHERE {{
|
||
?occupation wdt:P31 wd:Q28640.
|
||
?occupation rdfs:label ?occupationLabel.
|
||
{lang_filter}
|
||
|
||
OPTIONAL {{
|
||
?occupation wdt:P425 ?field.
|
||
?field rdfs:label ?fieldLabel.
|
||
FILTER(LANG(?fieldLabel) = "{language}")
|
||
}}
|
||
}}
|
||
LIMIT 500
|
||
"""
|
||
|
||
def _parse_sparql_response(self, data: dict, language: str) -> List[dict]:
|
||
"""解析 SPARQL 回應"""
|
||
results = []
|
||
bindings = data.get("results", {}).get("bindings", [])
|
||
|
||
for item in bindings:
|
||
name = item.get("occupationLabel", {}).get("value", "")
|
||
field = item.get("fieldLabel", {}).get("value", "")
|
||
|
||
if name and len(name) >= 2:
|
||
results.append({
|
||
"name": name,
|
||
"domain": field if field else self._infer_domain(name)
|
||
})
|
||
|
||
return results
|
||
|
||
def _infer_domain(self, occupation_name: str) -> str:
|
||
"""根據職業名稱推斷領域"""
|
||
# 簡單的領域推斷規則
|
||
domain_keywords = {
|
||
"醫": "醫療健康",
|
||
"師": "專業服務",
|
||
"工程": "工程技術",
|
||
"設計": "設計創意",
|
||
"藝術": "藝術文化",
|
||
"運動": "體育運動",
|
||
"農": "農業",
|
||
"漁": "漁業",
|
||
"商": "商業貿易",
|
||
"法": "法律",
|
||
"教": "教育",
|
||
"研究": "學術研究",
|
||
}
|
||
|
||
for keyword, domain in domain_keywords.items():
|
||
if keyword in occupation_name:
|
||
return domain
|
||
|
||
return "專業領域"
|
||
|
||
def _random_select(self, items: List[dict], count: int) -> List[dict]:
|
||
"""隨機選取指定數量"""
|
||
if len(items) <= count:
|
||
return items
|
||
return random.sample(items, count)
|
||
|
||
async def close(self):
|
||
await self.client.aclose()
|
||
|
||
|
||
class ConceptNetProvider(ExpertSourceProvider):
|
||
"""ConceptNet API 查詢提供者"""
|
||
|
||
ENDPOINT = "https://api.conceptnet.io"
|
||
|
||
def __init__(self):
|
||
self.client = httpx.AsyncClient(timeout=30.0)
|
||
|
||
async def fetch_occupations(
|
||
self, count: int, language: str = "zh"
|
||
) -> List[dict]:
|
||
"""從 ConceptNet 獲取職業相關概念"""
|
||
cache_key = f"conceptnet:{language}:occupations"
|
||
|
||
# 檢查快取
|
||
cached = expert_cache.get(cache_key)
|
||
if cached:
|
||
logger.info(f"ConceptNet cache hit: {len(cached)} concepts")
|
||
return self._random_select(cached, count)
|
||
|
||
# 查詢職業相關概念
|
||
lang_code = "zh" if language == "zh" else "en"
|
||
start_concept = f"/c/{lang_code}/職業" if lang_code == "zh" else f"/c/{lang_code}/occupation"
|
||
|
||
try:
|
||
occupations = []
|
||
|
||
# 查詢 IsA 關係
|
||
response = await self.client.get(
|
||
f"{self.ENDPOINT}/query",
|
||
params={
|
||
"start": start_concept,
|
||
"rel": "/r/IsA",
|
||
"limit": 100
|
||
}
|
||
)
|
||
response.raise_for_status()
|
||
data = response.json()
|
||
occupations.extend(self._parse_conceptnet_response(data, lang_code))
|
||
|
||
# 也查詢 RelatedTo 關係以獲取更多結果
|
||
response2 = await self.client.get(
|
||
f"{self.ENDPOINT}/query",
|
||
params={
|
||
"node": start_concept,
|
||
"rel": "/r/RelatedTo",
|
||
"limit": 100
|
||
}
|
||
)
|
||
response2.raise_for_status()
|
||
data2 = response2.json()
|
||
occupations.extend(self._parse_conceptnet_response(data2, lang_code))
|
||
|
||
# 去重
|
||
seen = set()
|
||
unique_occupations = []
|
||
for occ in occupations:
|
||
if occ["name"] not in seen:
|
||
seen.add(occ["name"])
|
||
unique_occupations.append(occ)
|
||
|
||
if unique_occupations:
|
||
expert_cache.set(cache_key, unique_occupations)
|
||
logger.info(f"ConceptNet fetched: {len(unique_occupations)} concepts")
|
||
|
||
return self._random_select(unique_occupations, count)
|
||
|
||
except Exception as e:
|
||
logger.error(f"ConceptNet query failed: {e}")
|
||
raise
|
||
|
||
def _parse_conceptnet_response(self, data: dict, lang_code: str) -> List[dict]:
|
||
"""解析 ConceptNet 回應"""
|
||
results = []
|
||
edges = data.get("edges", [])
|
||
|
||
for edge in edges:
|
||
# 取得 start 或 end 節點(取決於查詢方向)
|
||
start = edge.get("start", {})
|
||
end = edge.get("end", {})
|
||
|
||
# 選擇非起始節點的概念
|
||
node = end if start.get("@id", "").endswith("職業") or start.get("@id", "").endswith("occupation") else start
|
||
|
||
label = node.get("label", "")
|
||
term = node.get("term", "")
|
||
|
||
# 過濾:確保是目標語言且有意義
|
||
node_id = node.get("@id", "")
|
||
if f"/c/{lang_code}/" in node_id and label and len(label) >= 2:
|
||
results.append({
|
||
"name": label,
|
||
"domain": self._infer_domain_from_edge(edge)
|
||
})
|
||
|
||
return results
|
||
|
||
def _infer_domain_from_edge(self, edge: dict) -> str:
|
||
"""從 edge 資訊推斷領域"""
|
||
# ConceptNet 的 edge 包含 surfaceText 可能有額外資訊
|
||
surface = edge.get("surfaceText", "")
|
||
rel = edge.get("rel", {}).get("label", "")
|
||
|
||
if "專業" in surface:
|
||
return "專業領域"
|
||
elif "技術" in surface:
|
||
return "技術領域"
|
||
else:
|
||
return "知識領域"
|
||
|
||
def _random_select(self, items: List[dict], count: int) -> List[dict]:
|
||
"""隨機選取指定數量"""
|
||
if len(items) <= count:
|
||
return items
|
||
return random.sample(items, count)
|
||
|
||
async def close(self):
|
||
await self.client.aclose()
|
||
|
||
|
||
class ExpertSourceService:
|
||
"""統一的專家來源服務"""
|
||
|
||
def __init__(self):
|
||
self.wikidata = WikidataProvider()
|
||
self.conceptnet = ConceptNetProvider()
|
||
|
||
async def get_experts(
|
||
self,
|
||
source: str,
|
||
count: int,
|
||
language: str = "zh",
|
||
fallback_to_llm: bool = True
|
||
) -> Tuple[List[dict], str]:
|
||
"""
|
||
從指定來源獲取專家資料
|
||
|
||
Args:
|
||
source: 來源類型 ("wikidata" | "conceptnet")
|
||
count: 需要的專家數量
|
||
language: 語言代碼
|
||
fallback_to_llm: 失敗時是否允許 fallback(由呼叫者處理)
|
||
|
||
Returns:
|
||
(專家資料列表, 實際使用的來源)
|
||
|
||
Raises:
|
||
Exception: 當獲取失敗且不 fallback 時
|
||
"""
|
||
provider = self._get_provider(source)
|
||
|
||
try:
|
||
experts = await provider.fetch_occupations(count, language)
|
||
|
||
if not experts:
|
||
raise ValueError(f"No occupations found from {source}")
|
||
|
||
return experts, source
|
||
|
||
except Exception as e:
|
||
logger.warning(f"Failed to fetch from {source}: {e}")
|
||
raise
|
||
|
||
def _get_provider(self, source: str) -> ExpertSourceProvider:
|
||
"""根據來源類型取得對應的 provider"""
|
||
if source == "wikidata":
|
||
return self.wikidata
|
||
elif source == "conceptnet":
|
||
return self.conceptnet
|
||
else:
|
||
raise ValueError(f"Unknown source: {source}")
|
||
|
||
async def close(self):
|
||
"""關閉所有 HTTP clients"""
|
||
await self.wikidata.close()
|
||
await self.conceptnet.close()
|
||
|
||
|
||
# 全域服務實例
|
||
expert_source_service = ExpertSourceService()
|