Files
novelty-seeking/backend/app/main.py
gbanyan 534fdbbcc4 feat: Add Expert Transformation Agent with multi-expert perspective system
- Backend: Add expert transformation router with 3-step SSE pipeline
  - Step 0: Generate diverse expert team (random domains)
  - Step 1: Each expert generates keywords for attributes
  - Step 2: Batch generate descriptions for expert keywords
- Backend: Add simplified prompts for reliable JSON output
- Frontend: Add TransformationPanel with React Flow visualization
- Frontend: Add TransformationInputPanel for expert configuration
  - Expert count (2-8), keywords per expert (1-3)
  - Custom expert domains support
- Frontend: Add expert keyword nodes with expert badges
- Frontend: Improve description card layout (wider cards, more spacing)
- Frontend: Add fallback for missing descriptions with visual indicators

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-03 16:26:17 +08:00

44 lines
967 B
Python

from contextlib import asynccontextmanager
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from .routers import attributes, transformation, expert_transformation
from .services.llm_service import ollama_provider
@asynccontextmanager
async def lifespan(app: FastAPI):
yield
await ollama_provider.close()
app = FastAPI(
title="Attribute Agent API",
description="API for analyzing objects and extracting their attributes",
version="1.0.0",
lifespan=lifespan,
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.include_router(attributes.router)
app.include_router(transformation.router)
app.include_router(expert_transformation.router)
@app.get("/")
async def root():
return {"message": "Attribute Agent API is running"}
@app.get("/health")
async def health_check():
return {"status": "healthy"}