feat: Add Expert Transformation Agent with multi-expert perspective system
- Backend: Add expert transformation router with 3-step SSE pipeline - Step 0: Generate diverse expert team (random domains) - Step 1: Each expert generates keywords for attributes - Step 2: Batch generate descriptions for expert keywords - Backend: Add simplified prompts for reliable JSON output - Frontend: Add TransformationPanel with React Flow visualization - Frontend: Add TransformationInputPanel for expert configuration - Expert count (2-8), keywords per expert (1-3) - Custom expert domains support - Frontend: Add expert keyword nodes with expert badges - Frontend: Improve description card layout (wider cards, more spacing) - Frontend: Add fallback for missing descriptions with visual indicators 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -3,7 +3,7 @@ from contextlib import asynccontextmanager
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
|
||||
from .routers import attributes
|
||||
from .routers import attributes, transformation, expert_transformation
|
||||
from .services.llm_service import ollama_provider
|
||||
|
||||
|
||||
@@ -29,6 +29,8 @@ app.add_middleware(
|
||||
)
|
||||
|
||||
app.include_router(attributes.router)
|
||||
app.include_router(transformation.router)
|
||||
app.include_router(expert_transformation.router)
|
||||
|
||||
|
||||
@app.get("/")
|
||||
|
||||
@@ -131,3 +131,92 @@ class DAGRelationship(BaseModel):
|
||||
source: str # source attribute name
|
||||
target_category: str
|
||||
target: str # target attribute name
|
||||
|
||||
|
||||
# ===== Transformation Agent schemas =====
|
||||
|
||||
class TransformationRequest(BaseModel):
|
||||
"""Transformation Agent 請求"""
|
||||
query: str # 原始查詢 (e.g., "腳踏車")
|
||||
category: str # 類別名稱 (e.g., "功能")
|
||||
attributes: List[str] # 該類別的屬性列表
|
||||
model: Optional[str] = None
|
||||
temperature: Optional[float] = 0.7
|
||||
keyword_count: int = 3 # 要生成的新關鍵字數量
|
||||
|
||||
|
||||
class TransformationDescription(BaseModel):
|
||||
"""單一轉換描述"""
|
||||
keyword: str # 新關鍵字
|
||||
description: str # 與 query 結合的描述
|
||||
|
||||
|
||||
class TransformationCategoryResult(BaseModel):
|
||||
"""單一類別的轉換結果"""
|
||||
category: str
|
||||
original_attributes: List[str] # 原始屬性
|
||||
new_keywords: List[str] # 新生成的關鍵字
|
||||
descriptions: List[TransformationDescription]
|
||||
|
||||
|
||||
class TransformationDAGResult(BaseModel):
|
||||
"""完整 Transformation 結果"""
|
||||
query: str
|
||||
results: List[TransformationCategoryResult]
|
||||
|
||||
|
||||
# ===== Expert Transformation Agent schemas =====
|
||||
|
||||
class ExpertProfile(BaseModel):
|
||||
"""專家檔案"""
|
||||
id: str # e.g., "expert-0"
|
||||
name: str # e.g., "藥師"
|
||||
domain: str # e.g., "醫療與健康"
|
||||
perspective: Optional[str] = None # e.g., "從藥物與健康管理角度思考"
|
||||
|
||||
|
||||
class ExpertKeyword(BaseModel):
|
||||
"""專家視角生成的關鍵字"""
|
||||
keyword: str # 關鍵字本身
|
||||
expert_id: str # 哪個專家生成的
|
||||
expert_name: str # 專家名稱(冗餘,方便前端)
|
||||
source_attribute: str # 來自哪個原始屬性
|
||||
|
||||
|
||||
class ExpertTransformationDescription(BaseModel):
|
||||
"""專家關鍵字的描述"""
|
||||
keyword: str
|
||||
expert_id: str
|
||||
expert_name: str
|
||||
description: str
|
||||
|
||||
|
||||
class ExpertTransformationCategoryResult(BaseModel):
|
||||
"""單一類別的轉換結果(專家版)"""
|
||||
category: str
|
||||
original_attributes: List[str]
|
||||
expert_keywords: List[ExpertKeyword] # 所有專家生成的關鍵字
|
||||
descriptions: List[ExpertTransformationDescription]
|
||||
|
||||
|
||||
class ExpertTransformationDAGResult(BaseModel):
|
||||
"""完整轉換結果(專家版)"""
|
||||
query: str
|
||||
experts: List[ExpertProfile] # 使用的專家列表
|
||||
results: List[ExpertTransformationCategoryResult]
|
||||
|
||||
|
||||
class ExpertTransformationRequest(BaseModel):
|
||||
"""Expert Transformation Agent 請求"""
|
||||
query: str
|
||||
category: str
|
||||
attributes: List[str]
|
||||
|
||||
# Expert parameters
|
||||
expert_count: int = 3 # 專家數量 (2-8)
|
||||
keywords_per_expert: int = 1 # 每個專家為每個屬性生成幾個關鍵字 (1-3)
|
||||
custom_experts: Optional[List[str]] = None # 用戶指定專家 ["藥師", "工程師"]
|
||||
|
||||
# LLM parameters
|
||||
model: Optional[str] = None
|
||||
temperature: Optional[float] = 0.7
|
||||
|
||||
78
backend/app/prompts/expert_transformation_prompt.py
Normal file
78
backend/app/prompts/expert_transformation_prompt.py
Normal file
@@ -0,0 +1,78 @@
|
||||
"""Expert Transformation Agent 提示詞模組"""
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
def get_expert_generation_prompt(
|
||||
query: str,
|
||||
categories: List[str],
|
||||
expert_count: int,
|
||||
custom_experts: Optional[List[str]] = None
|
||||
) -> str:
|
||||
"""Step 0: 生成專家團隊(不依賴主題,純隨機多元)"""
|
||||
custom_text = ""
|
||||
if custom_experts and len(custom_experts) > 0:
|
||||
custom_text = f"(已指定:{', '.join(custom_experts[:expert_count])})"
|
||||
|
||||
return f"""/no_think
|
||||
隨機組建 {expert_count} 個來自完全不同領域的專家團隊{custom_text}。
|
||||
|
||||
回傳 JSON:
|
||||
{{"experts": [{{"id": "expert-0", "name": "職業", "domain": "領域", "perspective": "角度"}}, ...]}}
|
||||
|
||||
規則:
|
||||
- id 為 expert-0 到 expert-{expert_count - 1}
|
||||
- name 填寫職業名稱(非人名),2-5字
|
||||
- 各專家的 domain 必須來自截然不同的領域,越多元越好"""
|
||||
|
||||
|
||||
def get_expert_keyword_generation_prompt(
|
||||
category: str,
|
||||
attribute: str,
|
||||
experts: List[dict], # List[ExpertProfile]
|
||||
keywords_per_expert: int = 1
|
||||
) -> str:
|
||||
"""Step 1: 專家視角關鍵字生成"""
|
||||
experts_info = ", ".join([f"{exp['id']}:{exp['name']}({exp['domain']})" for exp in experts])
|
||||
|
||||
return f"""/no_think
|
||||
專家團隊:{experts_info}
|
||||
屬性:「{attribute}」({category})
|
||||
|
||||
每位專家從自己的專業視角為此屬性生成 {keywords_per_expert} 個創新關鍵字(2-6字)。
|
||||
關鍵字要反映該專家領域的獨特思考方式。
|
||||
|
||||
回傳 JSON:
|
||||
{{"keywords": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱"}}, ...]}}
|
||||
|
||||
共需 {len(experts) * keywords_per_expert} 個關鍵字。"""
|
||||
|
||||
|
||||
def get_expert_batch_description_prompt(
|
||||
query: str,
|
||||
category: str,
|
||||
expert_keywords: List[dict] # List[ExpertKeyword]
|
||||
) -> str:
|
||||
"""Step 2: 批次生成專家關鍵字的描述"""
|
||||
keywords_info = ", ".join([
|
||||
f"{kw['expert_name']}:{kw['keyword']}"
|
||||
for kw in expert_keywords
|
||||
])
|
||||
|
||||
# 建立 keyword -> (expert_id, expert_name) 的對照
|
||||
keyword_expert_map = ", ".join([
|
||||
f"{kw['keyword']}→{kw['expert_id']}/{kw['expert_name']}"
|
||||
for kw in expert_keywords
|
||||
])
|
||||
|
||||
return f"""/no_think
|
||||
物件:「{query}」
|
||||
關鍵字(專家:詞彙):{keywords_info}
|
||||
對照:{keyword_expert_map}
|
||||
|
||||
為每個關鍵字生成創新描述(15-30字),說明如何將該概念應用到「{query}」上。
|
||||
|
||||
回傳 JSON:
|
||||
{{"descriptions": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱", "description": "應用描述"}}, ...]}}
|
||||
|
||||
共需 {len(expert_keywords)} 個描述。"""
|
||||
97
backend/app/prompts/transformation_prompt.py
Normal file
97
backend/app/prompts/transformation_prompt.py
Normal file
@@ -0,0 +1,97 @@
|
||||
"""Transformation Agent 提示詞模組"""
|
||||
|
||||
from typing import List
|
||||
|
||||
|
||||
def get_keyword_generation_prompt(
|
||||
category: str,
|
||||
attributes: List[str],
|
||||
keyword_count: int = 3
|
||||
) -> str:
|
||||
"""
|
||||
Step 1: 生成新關鍵字
|
||||
|
||||
給定類別和現有屬性,生成全新的、有創意的關鍵字。
|
||||
不考慮原始查詢,只專注於類別本身可能的延伸。
|
||||
"""
|
||||
attrs_text = "、".join(attributes)
|
||||
|
||||
return f"""/no_think
|
||||
你是一個創意發想專家。給定一個類別和該類別下的現有屬性,請生成全新的、有創意的關鍵字或描述片段。
|
||||
|
||||
【類別】{category}
|
||||
【現有屬性】{attrs_text}
|
||||
|
||||
【重要規則】
|
||||
1. 生成 {keyword_count} 個全新的關鍵字
|
||||
2. 關鍵字必須符合「{category}」這個類別的範疇
|
||||
3. 關鍵字要有創意,不能與現有屬性重複或太相似
|
||||
4. 不要考慮任何特定物件,只專注於這個類別本身可能的延伸
|
||||
5. 每個關鍵字應該是 2-6 個字的詞彙或短語
|
||||
|
||||
只回傳 JSON:
|
||||
{{
|
||||
"keywords": ["關鍵字1", "關鍵字2", "關鍵字3"]
|
||||
}}"""
|
||||
|
||||
|
||||
def get_description_generation_prompt(
|
||||
query: str,
|
||||
category: str,
|
||||
keyword: str
|
||||
) -> str:
|
||||
"""
|
||||
Step 2: 結合原始查詢生成描述
|
||||
|
||||
用新關鍵字創造一個與原始查詢相關的創新應用描述。
|
||||
"""
|
||||
return f"""/no_think
|
||||
你是一個創新應用專家。請將一個新的關鍵字概念應用到特定物件上,創造出創新的應用描述。
|
||||
|
||||
【物件】{query}
|
||||
【類別】{category}
|
||||
【新關鍵字】{keyword}
|
||||
|
||||
【任務】
|
||||
請用「{keyword}」這個概念,為「{query}」創造一個創新的應用描述。
|
||||
描述應該是一個完整的句子或短語,說明如何將這個新概念應用到物件上。
|
||||
|
||||
【範例格式】
|
||||
- 如果物件是「腳踏車」,關鍵字是「監視」,可以生成「腳踏車監視騎乘者的身體健康狀況」
|
||||
- 如果物件是「雨傘」,關鍵字是「發電」,可以生成「雨傘利用雨滴撞擊發電」
|
||||
|
||||
只回傳 JSON:
|
||||
{{
|
||||
"description": "創新應用描述"
|
||||
}}"""
|
||||
|
||||
|
||||
def get_batch_description_prompt(
|
||||
query: str,
|
||||
category: str,
|
||||
keywords: List[str]
|
||||
) -> str:
|
||||
"""
|
||||
批次生成描述(可選的優化版本,一次處理多個關鍵字)
|
||||
"""
|
||||
keywords_text = "、".join(keywords)
|
||||
keywords_json = ", ".join([f'"{k}"' for k in keywords])
|
||||
|
||||
return f"""/no_think
|
||||
你是一個創新應用專家。請將多個新的關鍵字概念應用到特定物件上,為每個關鍵字創造創新的應用描述。
|
||||
|
||||
【物件】{query}
|
||||
【類別】{category}
|
||||
【新關鍵字】{keywords_text}
|
||||
|
||||
【任務】
|
||||
為每個關鍵字創造一個與「{query}」相關的創新應用描述。
|
||||
每個描述應該是一個完整的句子或短語。
|
||||
|
||||
只回傳 JSON:
|
||||
{{
|
||||
"descriptions": [
|
||||
{{"keyword": "關鍵字1", "description": "描述1"}},
|
||||
{{"keyword": "關鍵字2", "description": "描述2"}}
|
||||
]
|
||||
}}"""
|
||||
185
backend/app/routers/expert_transformation.py
Normal file
185
backend/app/routers/expert_transformation.py
Normal file
@@ -0,0 +1,185 @@
|
||||
"""Expert Transformation Agent 路由模組"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import AsyncGenerator, List
|
||||
|
||||
from fastapi import APIRouter
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
from ..models.schemas import (
|
||||
ExpertTransformationRequest,
|
||||
ExpertProfile,
|
||||
ExpertKeyword,
|
||||
ExpertTransformationCategoryResult,
|
||||
ExpertTransformationDescription,
|
||||
)
|
||||
from ..prompts.expert_transformation_prompt import (
|
||||
get_expert_generation_prompt,
|
||||
get_expert_keyword_generation_prompt,
|
||||
get_expert_batch_description_prompt,
|
||||
)
|
||||
from ..services.llm_service import ollama_provider, extract_json_from_response
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter(prefix="/api/expert-transformation", tags=["expert-transformation"])
|
||||
|
||||
|
||||
async def generate_expert_transformation_events(
|
||||
request: ExpertTransformationRequest,
|
||||
all_categories: List[str] # For expert generation context
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""Generate SSE events for expert transformation process"""
|
||||
try:
|
||||
temperature = request.temperature if request.temperature is not None else 0.7
|
||||
model = request.model
|
||||
|
||||
# ========== Step 0: Generate expert team ==========
|
||||
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...'}, ensure_ascii=False)}\n\n"
|
||||
|
||||
experts: List[ExpertProfile] = []
|
||||
|
||||
try:
|
||||
expert_prompt = get_expert_generation_prompt(
|
||||
query=request.query,
|
||||
categories=all_categories,
|
||||
expert_count=request.expert_count,
|
||||
custom_experts=request.custom_experts
|
||||
)
|
||||
logger.info(f"Expert prompt: {expert_prompt[:200]}")
|
||||
|
||||
expert_response = await ollama_provider.generate(
|
||||
expert_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Expert response: {expert_response[:500]}")
|
||||
|
||||
expert_data = extract_json_from_response(expert_response)
|
||||
experts_raw = expert_data.get("experts", [])
|
||||
|
||||
for exp in experts_raw:
|
||||
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
|
||||
experts.append(ExpertProfile(**exp))
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate experts: {e}")
|
||||
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
|
||||
yield f"event: expert_complete\ndata: {json.dumps({'experts': [e.model_dump() for e in experts]}, ensure_ascii=False)}\n\n"
|
||||
|
||||
if not experts:
|
||||
yield f"event: error\ndata: {json.dumps({'error': '無法生成專家團隊'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
|
||||
# ========== Step 1: Generate keywords from expert perspectives ==========
|
||||
yield f"event: keyword_start\ndata: {json.dumps({'message': f'專家團隊為「{request.category}」的屬性生成關鍵字...'}, ensure_ascii=False)}\n\n"
|
||||
|
||||
all_expert_keywords: List[ExpertKeyword] = []
|
||||
|
||||
# For each attribute, ask all experts to generate keywords
|
||||
for attr_index, attribute in enumerate(request.attributes):
|
||||
try:
|
||||
kw_prompt = get_expert_keyword_generation_prompt(
|
||||
category=request.category,
|
||||
attribute=attribute,
|
||||
experts=[e.model_dump() for e in experts],
|
||||
keywords_per_expert=request.keywords_per_expert
|
||||
)
|
||||
logger.info(f"Keyword prompt for '{attribute}': {kw_prompt[:300]}")
|
||||
|
||||
kw_response = await ollama_provider.generate(
|
||||
kw_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Keyword response for '{attribute}': {kw_response[:500]}")
|
||||
|
||||
kw_data = extract_json_from_response(kw_response)
|
||||
keywords_raw = kw_data.get("keywords", [])
|
||||
|
||||
# Add source_attribute to each keyword
|
||||
for kw in keywords_raw:
|
||||
if isinstance(kw, dict) and all(k in kw for k in ["keyword", "expert_id", "expert_name"]):
|
||||
all_expert_keywords.append(ExpertKeyword(
|
||||
keyword=kw["keyword"],
|
||||
expert_id=kw["expert_id"],
|
||||
expert_name=kw["expert_name"],
|
||||
source_attribute=attribute
|
||||
))
|
||||
|
||||
# Emit progress
|
||||
yield f"event: keyword_progress\ndata: {json.dumps({'attribute': attribute, 'count': len(keywords_raw)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to generate keywords for '{attribute}': {e}")
|
||||
yield f"event: keyword_progress\ndata: {json.dumps({'attribute': attribute, 'count': 0, 'error': str(e)}, ensure_ascii=False)}\n\n"
|
||||
# Continue with next attribute instead of stopping
|
||||
|
||||
yield f"event: keyword_complete\ndata: {json.dumps({'total_keywords': len(all_expert_keywords)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
if not all_expert_keywords:
|
||||
yield f"event: error\ndata: {json.dumps({'error': '無法生成關鍵字'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
|
||||
# ========== Step 2: Generate descriptions for each expert keyword ==========
|
||||
yield f"event: description_start\ndata: {json.dumps({'message': '為專家關鍵字生成創新應用描述...'}, ensure_ascii=False)}\n\n"
|
||||
|
||||
descriptions: List[ExpertTransformationDescription] = []
|
||||
|
||||
try:
|
||||
desc_prompt = get_expert_batch_description_prompt(
|
||||
query=request.query,
|
||||
category=request.category,
|
||||
expert_keywords=[kw.model_dump() for kw in all_expert_keywords]
|
||||
)
|
||||
logger.info(f"Description prompt: {desc_prompt[:300]}")
|
||||
|
||||
desc_response = await ollama_provider.generate(
|
||||
desc_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Description response: {desc_response[:500]}")
|
||||
|
||||
desc_data = extract_json_from_response(desc_response)
|
||||
descriptions_raw = desc_data.get("descriptions", [])
|
||||
|
||||
for desc in descriptions_raw:
|
||||
if isinstance(desc, dict) and all(k in desc for k in ["keyword", "expert_id", "expert_name", "description"]):
|
||||
descriptions.append(ExpertTransformationDescription(**desc))
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to generate descriptions: {e}")
|
||||
# Continue without descriptions - at least we have keywords
|
||||
|
||||
yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
# ========== Build final result ==========
|
||||
result = ExpertTransformationCategoryResult(
|
||||
category=request.category,
|
||||
original_attributes=request.attributes,
|
||||
expert_keywords=all_expert_keywords,
|
||||
descriptions=descriptions
|
||||
)
|
||||
|
||||
final_data = {
|
||||
"result": result.model_dump(),
|
||||
"experts": [e.model_dump() for e in experts]
|
||||
}
|
||||
yield f"event: done\ndata: {json.dumps(final_data, ensure_ascii=False)}\n\n"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Expert transformation error: {e}", exc_info=True)
|
||||
yield f"event: error\ndata: {json.dumps({'error': str(e)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
|
||||
@router.post("/category")
|
||||
async def expert_transform_category(request: ExpertTransformationRequest):
|
||||
"""處理單一類別的專家視角轉換"""
|
||||
# Extract all categories from request (should be passed separately in production)
|
||||
# For now, use just the single category
|
||||
return StreamingResponse(
|
||||
generate_expert_transformation_events(request, [request.category]),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
},
|
||||
)
|
||||
116
backend/app/routers/transformation.py
Normal file
116
backend/app/routers/transformation.py
Normal file
@@ -0,0 +1,116 @@
|
||||
"""Transformation Agent 路由模組"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import AsyncGenerator, List
|
||||
|
||||
from fastapi import APIRouter
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
from ..models.schemas import (
|
||||
TransformationRequest,
|
||||
TransformationCategoryResult,
|
||||
TransformationDescription,
|
||||
)
|
||||
from ..prompts.transformation_prompt import (
|
||||
get_keyword_generation_prompt,
|
||||
get_batch_description_prompt,
|
||||
)
|
||||
from ..services.llm_service import ollama_provider, extract_json_from_response
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter(prefix="/api/transformation", tags=["transformation"])
|
||||
|
||||
|
||||
async def generate_transformation_events(
|
||||
request: TransformationRequest
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""Generate SSE events for transformation process"""
|
||||
try:
|
||||
temperature = request.temperature if request.temperature is not None else 0.7
|
||||
model = request.model
|
||||
|
||||
# ========== Step 1: Generate new keywords ==========
|
||||
yield f"event: keyword_start\ndata: {json.dumps({'message': f'為「{request.category}」生成新關鍵字...'}, ensure_ascii=False)}\n\n"
|
||||
|
||||
keyword_prompt = get_keyword_generation_prompt(
|
||||
category=request.category,
|
||||
attributes=request.attributes,
|
||||
keyword_count=request.keyword_count
|
||||
)
|
||||
logger.info(f"Keyword prompt: {keyword_prompt[:200]}")
|
||||
|
||||
keyword_response = await ollama_provider.generate(
|
||||
keyword_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Keyword response: {keyword_response[:500]}")
|
||||
|
||||
keyword_data = extract_json_from_response(keyword_response)
|
||||
new_keywords = keyword_data.get("keywords", [])
|
||||
|
||||
yield f"event: keyword_complete\ndata: {json.dumps({'keywords': new_keywords}, ensure_ascii=False)}\n\n"
|
||||
|
||||
if not new_keywords:
|
||||
yield f"event: error\ndata: {json.dumps({'error': '無法生成新關鍵字'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
|
||||
# ========== Step 2: Generate descriptions for each keyword ==========
|
||||
yield f"event: description_start\ndata: {json.dumps({'message': '生成創新應用描述...'}, ensure_ascii=False)}\n\n"
|
||||
|
||||
# Use batch description prompt for efficiency
|
||||
desc_prompt = get_batch_description_prompt(
|
||||
query=request.query,
|
||||
category=request.category,
|
||||
keywords=new_keywords
|
||||
)
|
||||
logger.info(f"Description prompt: {desc_prompt[:300]}")
|
||||
|
||||
desc_response = await ollama_provider.generate(
|
||||
desc_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Description response: {desc_response[:500]}")
|
||||
|
||||
desc_data = extract_json_from_response(desc_response)
|
||||
descriptions_raw = desc_data.get("descriptions", [])
|
||||
|
||||
# Convert to TransformationDescription objects
|
||||
descriptions: List[TransformationDescription] = []
|
||||
for desc in descriptions_raw:
|
||||
if isinstance(desc, dict) and "keyword" in desc and "description" in desc:
|
||||
descriptions.append(TransformationDescription(
|
||||
keyword=desc["keyword"],
|
||||
description=desc["description"]
|
||||
))
|
||||
|
||||
yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
# ========== Build final result ==========
|
||||
result = TransformationCategoryResult(
|
||||
category=request.category,
|
||||
original_attributes=request.attributes,
|
||||
new_keywords=new_keywords,
|
||||
descriptions=descriptions
|
||||
)
|
||||
|
||||
final_data = {
|
||||
"result": result.model_dump()
|
||||
}
|
||||
yield f"event: done\ndata: {json.dumps(final_data, ensure_ascii=False)}\n\n"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Transformation error: {e}")
|
||||
yield f"event: error\ndata: {json.dumps({'error': str(e)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
|
||||
@router.post("/category")
|
||||
async def transform_category(request: TransformationRequest):
|
||||
"""處理單一類別的轉換"""
|
||||
return StreamingResponse(
|
||||
generate_transformation_events(request),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
},
|
||||
)
|
||||
Reference in New Issue
Block a user