Files
novelty-seeking/backend/app/prompts/expert_transformation_prompt.py
gbanyan 534fdbbcc4 feat: Add Expert Transformation Agent with multi-expert perspective system
- Backend: Add expert transformation router with 3-step SSE pipeline
  - Step 0: Generate diverse expert team (random domains)
  - Step 1: Each expert generates keywords for attributes
  - Step 2: Batch generate descriptions for expert keywords
- Backend: Add simplified prompts for reliable JSON output
- Frontend: Add TransformationPanel with React Flow visualization
- Frontend: Add TransformationInputPanel for expert configuration
  - Expert count (2-8), keywords per expert (1-3)
  - Custom expert domains support
- Frontend: Add expert keyword nodes with expert badges
- Frontend: Improve description card layout (wider cards, more spacing)
- Frontend: Add fallback for missing descriptions with visual indicators

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-03 16:26:17 +08:00

79 lines
2.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""Expert Transformation Agent 提示詞模組"""
from typing import List, Optional
def get_expert_generation_prompt(
query: str,
categories: List[str],
expert_count: int,
custom_experts: Optional[List[str]] = None
) -> str:
"""Step 0: 生成專家團隊(不依賴主題,純隨機多元)"""
custom_text = ""
if custom_experts and len(custom_experts) > 0:
custom_text = f"(已指定:{', '.join(custom_experts[:expert_count])}"
return f"""/no_think
隨機組建 {expert_count} 個來自完全不同領域的專家團隊{custom_text}
回傳 JSON
{{"experts": [{{"id": "expert-0", "name": "職業", "domain": "領域", "perspective": "角度"}}, ...]}}
規則:
- id 為 expert-0 到 expert-{expert_count - 1}
- name 填寫職業名稱非人名2-5字
- 各專家的 domain 必須來自截然不同的領域,越多元越好"""
def get_expert_keyword_generation_prompt(
category: str,
attribute: str,
experts: List[dict], # List[ExpertProfile]
keywords_per_expert: int = 1
) -> str:
"""Step 1: 專家視角關鍵字生成"""
experts_info = ", ".join([f"{exp['id']}:{exp['name']}({exp['domain']})" for exp in experts])
return f"""/no_think
專家團隊:{experts_info}
屬性:「{attribute}」({category}
每位專家從自己的專業視角為此屬性生成 {keywords_per_expert} 個創新關鍵字2-6字
關鍵字要反映該專家領域的獨特思考方式。
回傳 JSON
{{"keywords": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱"}}, ...]}}
共需 {len(experts) * keywords_per_expert} 個關鍵字。"""
def get_expert_batch_description_prompt(
query: str,
category: str,
expert_keywords: List[dict] # List[ExpertKeyword]
) -> str:
"""Step 2: 批次生成專家關鍵字的描述"""
keywords_info = ", ".join([
f"{kw['expert_name']}:{kw['keyword']}"
for kw in expert_keywords
])
# 建立 keyword -> (expert_id, expert_name) 的對照
keyword_expert_map = ", ".join([
f"{kw['keyword']}{kw['expert_id']}/{kw['expert_name']}"
for kw in expert_keywords
])
return f"""/no_think
物件:「{query}
關鍵字(專家:詞彙):{keywords_info}
對照:{keyword_expert_map}
為每個關鍵字生成創新描述15-30字說明如何將該概念應用到「{query}」上。
回傳 JSON
{{"descriptions": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱", "description": "應用描述"}}, ...]}}
共需 {len(expert_keywords)} 個描述。"""