feat: Add experiments framework and novelty-driven agent loop

- Add complete experiments directory with pilot study infrastructure
  - 5 experimental conditions (direct, expert-only, attribute-only, full-pipeline, random-perspective)
  - Human assessment tool with React frontend and FastAPI backend
  - AUT flexibility analysis with jump signal detection
  - Result visualization and metrics computation

- Add novelty-driven agent loop module (experiments/novelty_loop/)
  - NoveltyDrivenTaskAgent with expert perspective perturbation
  - Three termination strategies: breakthrough, exhaust, coverage
  - Interactive CLI demo with colored output
  - Embedding-based novelty scoring

- Add DDC knowledge domain classification data (en/zh)
- Add CLAUDE.md project documentation
- Update research report with experiment findings

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-20 10:16:21 +08:00
parent 26a56a2a07
commit 43c025e060
81 changed files with 18766 additions and 2 deletions

101
CLAUDE.md Normal file
View File

@@ -0,0 +1,101 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
This is a creative ideation system that uses LLMs to break "semantic gravity" (the tendency of LLMs to generate ideas clustered around high-probability training distributions). The system analyzes objects through multiple attribute dimensions and transforms them using expert perspectives to generate novel ideas.
## Development Commands
### Starting the Application
```bash
./start.sh # Starts both backend (port 8001) and frontend (port 5173)
./stop.sh # Stops all services
```
### Backend (FastAPI + Python)
```bash
cd backend
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
uvicorn app.main:app --host 0.0.0.0 --port 8001 --reload
```
### Frontend (React + Vite + TypeScript)
```bash
cd frontend
npm install
npm run dev # Development server
npm run build # TypeScript check + production build
npm run lint # ESLint
```
## Architecture
### Multi-Agent Pipeline
The system uses three interconnected agents that process queries through Server-Sent Events (SSE) for real-time streaming:
```
Query → Attribute Agent → Expert Transformation Agent → Deduplication Agent
Patent Search (optional)
```
**1. Attribute Agent** (`/api/analyze`)
- Analyzes a query (e.g., "bicycle") through configurable category dimensions
- Step 0: Category analysis (5 modes: FIXED_ONLY, FIXED_PLUS_CUSTOM, FIXED_PLUS_DYNAMIC, CUSTOM_ONLY, DYNAMIC_AUTO)
- Step 1: Generate attributes per category
- Step 2: Build DAG relationships between attributes across categories
- Output: `AttributeDAG` with nodes and edges
**2. Expert Transformation Agent** (`/api/expert-transformation/category`)
- Takes attributes and transforms them through diverse expert perspectives
- Step 0: Generate expert team (sources: `llm`, `curated`, `dbpedia`, `wikidata`)
- Step 1: Each expert generates keywords for each attribute
- Step 2: Generate descriptions for each keyword
- Formula: `total_keywords = attributes × expert_count × keywords_per_expert`
**3. Deduplication Agent** (`/api/deduplication/deduplicate`)
- Consolidates similar ideas using embedding similarity or LLM judgment
- Groups duplicates while preserving representative descriptions
### Backend Structure (`backend/app/`)
- `routers/` - FastAPI endpoints with SSE streaming
- `services/` - LLM service (Ollama/OpenAI), embedding service, expert source service
- `prompts/` - Bilingual prompt templates (zh/en) for each agent step
- `data/` - Curated occupation lists for expert sourcing (210 professions)
### Frontend Structure (`frontend/src/`)
- `hooks/` - React hooks matching backend agents (`useAttribute`, `useExpertTransformation`, `useDeduplication`)
- `components/` - UI panels for each stage + DAG visualization (D3.js, @xyflow/react)
- `services/api.ts` - SSE stream parsing and API calls
- `types/index.ts` - TypeScript interfaces mirroring backend schemas
### Key Patterns
**SSE Event Flow**: All agent operations stream progress via SSE events:
```typescript
// Frontend callback pattern
onStep0Start onStep0Complete onStep1Start onStep1Complete onDone
```
**Bilingual Support**: All prompts and UI support `PromptLanguage = 'zh' | 'en'`. Language flows through the entire pipeline from request to response messages.
**Expert Source Fallback**: If external sources (DBpedia, Wikidata) fail, system automatically falls back to LLM-based expert generation.
### Configuration
Backend requires `.env` file:
```
OLLAMA_BASE_URL=http://localhost:11435 # Default Ollama endpoint
DEFAULT_MODEL=qwen3:8b # Default LLM model
OPENAI_API_KEY= # Optional: for OpenAI-compatible APIs
LENS_API_TOKEN= # Optional: for patent search
```
### Dual-Path Mode
The system supports analyzing two queries in parallel (`PathA` and `PathB`) with attribute crossover functionality for comparing and combining ideas across different objects.