- Add complete experiments directory with pilot study infrastructure - 5 experimental conditions (direct, expert-only, attribute-only, full-pipeline, random-perspective) - Human assessment tool with React frontend and FastAPI backend - AUT flexibility analysis with jump signal detection - Result visualization and metrics computation - Add novelty-driven agent loop module (experiments/novelty_loop/) - NoveltyDrivenTaskAgent with expert perspective perturbation - Three termination strategies: breakthrough, exhaust, coverage - Interactive CLI demo with colored output - Embedding-based novelty scoring - Add DDC knowledge domain classification data (en/zh) - Add CLAUDE.md project documentation - Update research report with experiment findings Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
4.0 KiB
CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
Project Overview
This is a creative ideation system that uses LLMs to break "semantic gravity" (the tendency of LLMs to generate ideas clustered around high-probability training distributions). The system analyzes objects through multiple attribute dimensions and transforms them using expert perspectives to generate novel ideas.
Development Commands
Starting the Application
./start.sh # Starts both backend (port 8001) and frontend (port 5173)
./stop.sh # Stops all services
Backend (FastAPI + Python)
cd backend
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
uvicorn app.main:app --host 0.0.0.0 --port 8001 --reload
Frontend (React + Vite + TypeScript)
cd frontend
npm install
npm run dev # Development server
npm run build # TypeScript check + production build
npm run lint # ESLint
Architecture
Multi-Agent Pipeline
The system uses three interconnected agents that process queries through Server-Sent Events (SSE) for real-time streaming:
Query → Attribute Agent → Expert Transformation Agent → Deduplication Agent
↓
Patent Search (optional)
1. Attribute Agent (/api/analyze)
- Analyzes a query (e.g., "bicycle") through configurable category dimensions
- Step 0: Category analysis (5 modes: FIXED_ONLY, FIXED_PLUS_CUSTOM, FIXED_PLUS_DYNAMIC, CUSTOM_ONLY, DYNAMIC_AUTO)
- Step 1: Generate attributes per category
- Step 2: Build DAG relationships between attributes across categories
- Output:
AttributeDAGwith nodes and edges
2. Expert Transformation Agent (/api/expert-transformation/category)
- Takes attributes and transforms them through diverse expert perspectives
- Step 0: Generate expert team (sources:
llm,curated,dbpedia,wikidata) - Step 1: Each expert generates keywords for each attribute
- Step 2: Generate descriptions for each keyword
- Formula:
total_keywords = attributes × expert_count × keywords_per_expert
3. Deduplication Agent (/api/deduplication/deduplicate)
- Consolidates similar ideas using embedding similarity or LLM judgment
- Groups duplicates while preserving representative descriptions
Backend Structure (backend/app/)
routers/- FastAPI endpoints with SSE streamingservices/- LLM service (Ollama/OpenAI), embedding service, expert source serviceprompts/- Bilingual prompt templates (zh/en) for each agent stepdata/- Curated occupation lists for expert sourcing (210 professions)
Frontend Structure (frontend/src/)
hooks/- React hooks matching backend agents (useAttribute,useExpertTransformation,useDeduplication)components/- UI panels for each stage + DAG visualization (D3.js, @xyflow/react)services/api.ts- SSE stream parsing and API callstypes/index.ts- TypeScript interfaces mirroring backend schemas
Key Patterns
SSE Event Flow: All agent operations stream progress via SSE events:
// Frontend callback pattern
onStep0Start → onStep0Complete → onStep1Start → onStep1Complete → onDone
Bilingual Support: All prompts and UI support PromptLanguage = 'zh' | 'en'. Language flows through the entire pipeline from request to response messages.
Expert Source Fallback: If external sources (DBpedia, Wikidata) fail, system automatically falls back to LLM-based expert generation.
Configuration
Backend requires .env file:
OLLAMA_BASE_URL=http://localhost:11435 # Default Ollama endpoint
DEFAULT_MODEL=qwen3:8b # Default LLM model
OPENAI_API_KEY= # Optional: for OpenAI-compatible APIs
LENS_API_TOKEN= # Optional: for patent search
Dual-Path Mode
The system supports analyzing two queries in parallel (PathA and PathB) with attribute crossover functionality for comparing and combining ideas across different objects.