10 KiB
phase, verified, status, score, re_verification
| phase | verified | status | score | re_verification |
|---|---|---|---|---|
| 05-output-cli | 2026-02-12T12:00:00Z | passed | 6/6 success criteria verified | false |
Phase 5: Output & CLI Verification Report
Phase Goal: User-facing interface and structured tiered output Verified: 2026-02-12T12:00:00Z Status: passed Re-verification: No - initial verification
Goal Achievement
Observable Truths
| # | Truth | Status | Evidence |
|---|---|---|---|
| 1 | Pipeline produces tiered candidate list (high/medium/low confidence) based on composite score and evidence breadth | ✓ VERIFIED | assign_tiers() in tiers.py implements configurable thresholds (HIGH: score>=0.7 & evidence>=3, MEDIUM: score>=0.4 & evidence>=2, LOW: score>=0.2). Uses vectorized polars when/then/otherwise chains. EXCLUDED genes filtered out. |
| 2 | Each candidate includes multi-dimensional evidence summary showing which layers support it and which have gaps | ✓ VERIFIED | add_evidence_summary() in evidence_summary.py adds supporting_layers (comma-separated list of non-NULL scores) and evidence_gaps (comma-separated list of NULL scores). Uses polars concat_list + list.drop_nulls + list.join. |
| 3 | Output is available in TSV and Parquet formats compatible with downstream tools | ✓ VERIFIED | write_candidate_output() in writers.py writes both TSV (tab separator) and Parquet (snappy compression) with identical data. Includes YAML provenance sidecar with statistics, column metadata. Deterministic sorting (composite_score DESC, gene_id ASC). |
| 4 | Pipeline generates visualizations: score distribution, evidence layer contribution, tier breakdown | ✓ VERIFIED | visualizations.py implements plot_score_distribution() (histogram colored by tier), plot_layer_contributions() (bar chart of layer coverage), plot_tier_breakdown() (pie chart). All saved at 300 DPI. matplotlib Agg backend (headless-safe). Proper plt.close() to prevent memory leaks. generate_all_plots() orchestrates with error handling. |
| 5 | Unified CLI provides subcommands for running layers, integration, and reporting with progress logging | ✓ VERIFIED | report_cmd.py implements full CLI command registered in main.py. Follows established pattern: config load, store init, checkpoint check, pipeline steps with click.style output, summary, cleanup. Supports --output-dir, --force, --skip-viz, --skip-report, configurable tier thresholds. Integrates all output modules: assign_tiers, add_evidence_summary, write_candidate_output, generate_all_plots, generate_reproducibility_report. |
| 6 | Reproducibility report documents all parameters, data versions, gene counts at filtering steps, and validation metrics | ✓ VERIFIED | reproducibility.py implements ReproducibilityReport dataclass with to_json() and to_markdown() methods. generate_reproducibility_report() extracts parameters from config.scoring.model_dump(), data_versions from config.versions.model_dump(), software versions (Python, polars, duckdb), filtering steps from provenance.get_steps(), tier statistics, and optional validation metrics. |
Score: 6/6 truths verified
Required Artifacts
| Artifact | Expected | Status | Details |
|---|---|---|---|
| src/usher_pipeline/output/tiers.py | Confidence tiering logic | ✓ VERIFIED | 84 lines. Exports assign_tiers, TIER_THRESHOLDS. Uses polars when/then/otherwise chains. Filters EXCLUDED genes. Deterministic sorting. |
| src/usher_pipeline/output/evidence_summary.py | Per-gene evidence summary columns | ✓ VERIFIED | 83 lines. Exports add_evidence_summary, EVIDENCE_LAYERS. Uses concat_list + list.drop_nulls + list.join for comma-separated strings. |
| src/usher_pipeline/output/writers.py | Dual-format TSV+Parquet writer | ✓ VERIFIED | 105 lines. Exports write_candidate_output. Writes TSV (tab separator), Parquet (snappy), and YAML provenance sidecar. Computes tier statistics. |
| src/usher_pipeline/output/visualizations.py | matplotlib/seaborn visualization functions | ✓ VERIFIED | 245 lines. Exports plot_score_distribution, plot_layer_contributions, plot_tier_breakdown, generate_all_plots. Uses Agg backend. 300 DPI output. Proper plt.close(). |
| src/usher_pipeline/output/reproducibility.py | Reproducibility report generation | ✓ VERIFIED | 321 lines. Exports ReproducibilityReport, FilteringStep, generate_reproducibility_report. JSON and Markdown output. Extracts config, provenance, tier stats, validation metrics. |
| src/usher_pipeline/output/init.py | Package exports | ✓ VERIFIED | 30 lines. Exports all functions from tiers, evidence_summary, writers, visualizations, reproducibility. |
| src/usher_pipeline/cli/report_cmd.py | CLI report command | ✓ VERIFIED | 400+ lines. Orchestrates full output pipeline. Supports --output-dir, --force, --skip-viz, --skip-report, tier threshold flags. Error handling, progress logging, checkpoint pattern. |
| tests/test_output.py | Unit tests for output module | ✓ VERIFIED | 602 lines. 9 tests covering tiering, evidence summary, writers, provenance. |
| tests/test_visualizations.py | Tests for visualization generation | ✓ VERIFIED | 112 lines. 6 tests for plot creation, empty DataFrame handling. |
| tests/test_reproducibility.py | Tests for report content | ✓ VERIFIED | 245 lines. 7 tests for report fields, JSON/Markdown output, validation metrics. |
| tests/test_report_cmd.py | CliRunner integration tests | ✓ VERIFIED | 308 lines. 9 tests for CLI command with synthetic fixtures. |
Key Link Verification
| From | To | Via | Status | Details |
|---|---|---|---|---|
| tiers.py | scored_genes DataFrame | polars expressions with composite_score and evidence_count | ✓ WIRED | Lines 62-68 use pl.col("composite_score") and pl.col("evidence_count") in when/then chains. Line 81 sorts by composite_score DESC. |
| writers.py | TSV and Parquet files | polars write_csv and write_parquet | ✓ WIRED | Line 66: df.write_csv(tsv_path, separator="\t"). Line 69: df.write_parquet(parquet_path, compression="snappy"). |
| visualizations.py | matplotlib/seaborn | to_pandas() conversion | ✓ WIRED | Line 35: pdf = df.to_pandas(). Lines 38, 44, 116: sns.set_theme(), sns.histplot(), sns.barplot(). |
| reproducibility.py | config and provenance | model_dump() extraction | ✓ WIRED | Line 239: parameters = config.scoring.model_dump(). Line 242: data_versions = config.versions.model_dump(). Line 253: provenance.get_steps(). |
| report_cmd.py | output modules | imports and function calls | ✓ WIRED | Lines 19-25: imports assign_tiers, add_evidence_summary, write_candidate_output, generate_all_plots, generate_reproducibility_report. Lines 215, 246, 262, 300, 337: calls to all imported functions. |
| main.py | report_cmd.py | cli.add_command(report) | ✓ WIRED | Line 16: from usher_pipeline.cli.report_cmd import report. Line 105: cli.add_command(report). |
Requirements Coverage
| Requirement | Status | Supporting Evidence |
|---|---|---|
| OUTP-01: Tiered candidate list (high/medium/low confidence) based on composite score and evidence breadth | ✓ SATISFIED | tiers.py assign_tiers() with configurable thresholds. CLI report command applies tiering. |
| OUTP-02: Multi-dimensional evidence summary showing which layers support and which have gaps | ✓ SATISFIED | evidence_summary.py add_evidence_summary() adds supporting_layers and evidence_gaps columns. |
| OUTP-03: Structured machine-readable format (TSV and Parquet) compatible with downstream tools | ✓ SATISFIED | writers.py write_candidate_output() produces TSV and Parquet with identical data. YAML provenance sidecar includes column metadata. |
| OUTP-04: Basic visualizations (score distribution, evidence layer contribution, tier breakdown) | ✓ SATISFIED | visualizations.py implements all 3 plot types at 300 DPI. generate_all_plots() orchestrates. |
| OUTP-05: Reproducibility report documenting parameters, data versions, gene counts, validation metrics | ✓ SATISFIED | reproducibility.py generate_reproducibility_report() creates JSON and Markdown with all required metadata. |
Anti-Patterns Found
None. No TODO/FIXME/PLACEHOLDER comments, no stub implementations, no empty returns found in output modules or report_cmd.py.
Commits Verified
All commits from SUMMARYs exist in git history:
d2ef3a2: feat(05-01): implement tiering logic and evidence summary module4e46b48: feat(05-01): add dual-format writer with provenance and tests150417f: feat(05-02): implement visualization module with matplotlib/seaborn plots5af63ea: feat(05-02): implement reproducibility report module with JSON and Markdown output2ab25ef: feat(05-03): implement CLI report commandc10d595: test(05-03): add CliRunner integration tests for report command
Test Coverage
| Test File | Tests | Status |
|---|---|---|
| test_output.py | 9 | ✓ VERIFIED (test count matches SUMMARY claim) |
| test_visualizations.py | 6 | ✓ VERIFIED (test count matches SUMMARY claim) |
| test_reproducibility.py | 7 | ✓ VERIFIED (test count matches SUMMARY claim) |
| test_report_cmd.py | 9 | ✓ VERIFIED (test count matches SUMMARY claim) |
Note: Tests cannot run due to dependency resolution issue (cellxgene-census version conflict), but test files exist with substantive implementations matching SUMMARY descriptions.
Overall Status
Status: passed
All 6 success criteria are verified. All artifacts exist and are substantive. All key links are wired correctly. No anti-patterns detected. All commits exist. Test files exist with correct test counts.
The phase goal "User-facing interface and structured tiered output" is fully achieved:
- Tiered candidate classification (HIGH/MEDIUM/LOW) based on composite score and evidence breadth
- Multi-dimensional evidence summary (supporting_layers and evidence_gaps)
- Dual-format output (TSV and Parquet) with YAML provenance sidecars
- Visualizations (score distribution, layer contributions, tier breakdown) at 300 DPI
- Unified CLI report command integrating all output modules
- Reproducibility reports (JSON and Markdown) with parameters, versions, filtering steps, validation metrics
Verified: 2026-02-12T12:00:00Z Verifier: Claude (gsd-verifier)