12 KiB
phase, plan, type, wave, depends_on, files_modified, autonomous, must_haves
| phase | plan | type | wave | depends_on | files_modified | autonomous | must_haves | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 04-scoring-integration | 03 | execute | 3 |
|
|
true |
|
Purpose: The CLI command provides the user-facing interface for running the scoring pipeline (integrating all evidence, running QC, validating against known genes). Tests ensure correctness of NULL handling, weight validation, and end-to-end scoring with synthetic data.
Output: src/usher_pipeline/cli/score_cmd.py, tests/test_scoring.py, tests/test_scoring_integration.py.
<execution_context> @/Users/gbanyan/.claude/get-shit-done/workflows/execute-plan.md @/Users/gbanyan/.claude/get-shit-done/templates/summary.md </execution_context>
@.planning/PROJECT.md @.planning/ROADMAP.md @.planning/STATE.md @.planning/phases/04-scoring-integration/04-RESEARCH.md @.planning/phases/04-scoring-integration/04-01-SUMMARY.md @.planning/phases/04-scoring-integration/04-02-SUMMARY.md @src/usher_pipeline/cli/evidence_cmd.py @src/usher_pipeline/cli/main.py @src/usher_pipeline/scoring/__init__.py Task 1: CLI score command with checkpoint-restart src/usher_pipeline/cli/score_cmd.py src/usher_pipeline/cli/main.py 1. Create `src/usher_pipeline/cli/score_cmd.py` following the established pattern from `evidence_cmd.py`:Import: click, structlog, sys, Path, load_config, PipelineStore, ProvenanceTracker, and from scoring module: load_known_genes_to_duckdb, compute_composite_scores, persist_scored_genes, run_qc_checks, validate_known_gene_ranking, generate_validation_report. Import ScoringWeights from config.schema.
Create Click command score (not a group -- single command):
- Options:
--force(is_flag): Re-run scoring even if scored_genes checkpoint exists--skip-qc(is_flag): Skip quality control checks (for faster iteration)--skip-validation(is_flag): Skip known gene validation
- Uses
@click.pass_contextto get config_path fromctx.obj['config_path']
Implementation flow (follows evidence_cmd.py pattern):
a. Load config, initialize store and provenance
b. Check checkpoint: store.has_checkpoint('scored_genes') -- if exists and not --force, show summary and return
c. Load and validate scoring weights: config.scoring, call validate_sum()
d. Step 1 - Load known genes: call load_known_genes_to_duckdb(store), display count
e. Step 2 - Compute composite scores: call compute_composite_scores(store, config.scoring), display summary (total genes, mean score, quality flag distribution)
f. Step 3 - Persist scores: call persist_scored_genes(store, scored_df, config.scoring)
g. Step 4 (unless --skip-qc) - Run QC: call run_qc_checks(store), display warnings/errors, log missing data rates
h. Step 5 (unless --skip-validation) - Validate: call validate_known_gene_ranking(store), display results with generate_validation_report()
i. Save provenance sidecar to data_dir/scoring/scoring.provenance.json
j. Display final summary: total scored genes, mean composite score, quality flag counts, QC pass/fail, validation pass/fail
Use Click styling consistent with evidence_cmd.py: click.style("=== Title ===", bold=True), green for success, yellow for warnings, red for errors.
Error handling: wrap each step in try/except, display error with click.style(fg='red'), sys.exit(1). Always close store in finally block.
- Update
src/usher_pipeline/cli/main.py:- Import score command from score_cmd.py
- Add it to the CLI group:
cli.add_command(score)(same pattern as evidence command) - The score command should be a top-level command (not nested under evidence), since it's a different pipeline phase
Run:
cd /Users/gbanyan/Project/usher-exploring && python -c " from usher_pipeline.cli.score_cmd import score import click.testing runner = click.testing.CliRunner() result = runner.invoke(score, ['--help']) print(result.output) assert result.exit_code == 0 assert '--force' in result.output assert '--skip-qc' in result.output assert '--skip-validation' in result.output print('CLI score command --help works') " && python -c " from usher_pipeline.cli.main import cli import click.testing runner = click.testing.CliRunner() result = runner.invoke(cli, ['--help']) print(result.output) assert 'score' in result.output, 'score command not registered in main CLI' print('Score command registered in main CLI') " usher-pipeline scorecommand exists with --force, --skip-qc, --skip-validation options- Score command registered in main CLI group
- Follows established pattern: config load -> checkpoint check -> process -> persist -> provenance
- Orchestrates full pipeline: known genes -> scoring -> QC -> validation
Import: pytest, polars, from scoring module all functions, ScoringWeights.
Test class or functions:
a. test_compile_known_genes_returns_expected_structure:
- Call compile_known_genes()
- Assert returns polars DataFrame with columns: gene_symbol, source, confidence
- Assert height >= 38 (10 Usher + 28+ SYSCILIA)
- Assert "MYO7A" in gene_symbol values
- Assert "IFT88" in gene_symbol values
- Assert all confidence values == "HIGH"
- Assert sources include both "omim_usher" and "syscilia_scgs_v2"
b. test_compile_known_genes_no_duplicates_within_source:
- Verify no duplicate gene_symbol within the same source
- (A gene CAN appear in both sources as separate rows)
c. test_scoring_weights_validate_sum_defaults:
- ScoringWeights() with defaults should pass validate_sum()
d. test_scoring_weights_validate_sum_custom_valid:
- ScoringWeights with custom weights summing to 1.0 should pass
e. test_scoring_weights_validate_sum_invalid:
- ScoringWeights(gnomad=0.5) sums to 1.35 -> validate_sum() raises ValueError
f. test_scoring_weights_validate_sum_close_to_one:
- Weights that sum to 0.999999 (within 1e-6) should pass
- Weights that sum to 0.99 should fail
g. test_null_preservation_in_composite:
- Create a synthetic PipelineStore (in-memory DuckDB: duckdb.connect(':memory:'))
- Create a minimal gene_universe table with 3 genes
- Create gnomad_constraint table with scores for genes 1 and 2 (gene 3 has no entry)
- Create annotation_completeness with scores for gene 1 only
- Create empty/missing entries for other evidence tables (create them with no rows or only partial rows)
- Call join_evidence_layers and verify gene 3 has NULL gnomad_score and NULL annotation_score
- Call compute_composite_scores and verify gene 3 with zero evidence layers has composite_score = NULL
-
Create
tests/test_scoring_integration.pywith integration tests:a.
test_scoring_pipeline_end_to_end:- Create in-memory PipelineStore (wrap duckdb.connect(':memory:') in a PipelineStore-like interface, OR create tmp file with pytest tmp_path)
- Create synthetic tables for all 7 tables (gene_universe + 6 evidence):
- gene_universe: 20 genes (gene_001 through gene_020) with gene_symbols
- Include some known genes (MYO7A, IFT88, CDH23) in the gene universe as genes 18-20
- gnomad_constraint: 15 genes with loeuf_normalized scores, 5 NULL
- tissue_expression: 12 genes with expression_score_normalized, 8 NULL
- annotation_completeness: 18 genes with annotation_score_normalized
- subcellular_localization: 10 genes with localization_score_normalized
- animal_model_phenotypes: 8 genes with animal_model_score_normalized
- literature_evidence: 14 genes with literature_score_normalized
- Give known genes (MYO7A, IFT88, CDH23) HIGH scores in multiple layers (0.8-0.95) to ensure they rank highly
- Run compute_composite_scores with default ScoringWeights
- Assert: all 20 genes present in result
- Assert: composite_score is not NULL for genes with at least 1 evidence layer
- Assert: evidence_count values are correct (count of non-NULL scores)
- Assert: quality_flag values are correct based on evidence_count
- Assert: known genes (MYO7A, IFT88, CDH23) have high composite scores (among top 5)
b.
test_qc_detects_missing_data:- Create scored_genes table where one layer is 90% NULL
- Run run_qc_checks
- Assert that layer appears in errors (>80% missing)
c.
test_validation_passes_with_known_genes_ranked_highly:- Use scored_genes from end-to-end test (known genes scored highly)
- Run validate_known_gene_ranking
- Assert validation_passed is True
Use
tmp_pathfixture for DuckDB file-based stores. UsePipelineStore(tmp_path / "test.duckdb")for store creation. Follow existing test patterns from tests/test_gnomad_integration.py. Run:cd /Users/gbanyan/Project/usher-exploring && python -m pytest tests/test_scoring.py tests/test_scoring_integration.py -v --tb=short 2>&1 | tail -30- test_scoring.py: 7+ unit tests covering known genes, weight validation, NULL preservation
- test_scoring_integration.py: 3+ integration tests covering end-to-end pipeline with synthetic data
- All tests pass with
pytest tests/test_scoring.py tests/test_scoring_integration.py - Tests verify NULL preservation (genes with no evidence get NULL composite score)
- Tests verify known genes rank highly when given high scores
<success_criteria>
- CLI score command orchestrates: known genes -> composite scoring -> QC -> validation
- Checkpoint-restart: skips if scored_genes table exists (unless --force)
- pytest tests/test_scoring.py passes all unit tests
- pytest tests/test_scoring_integration.py passes all integration tests
- Tests use synthetic data (no external API calls, fast, reproducible) </success_criteria>