12 KiB
phase, plan, type, wave, depends_on, files_modified, autonomous, must_haves
| phase | plan | type | wave | depends_on | files_modified | autonomous | must_haves | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 04-scoring-integration | 01 | execute | 1 |
|
true |
|
Purpose: Establishes the foundation for Phase 4 -- the known gene list (for exclusion and positive control validation) and the core scoring engine that joins all 6 evidence tables with configurable weights and NULL-preserving weighted averages.
Output: src/usher_pipeline/scoring/ module with known_genes.py and integration.py; updated config/schema.py with weight sum validation.
<execution_context> @/Users/gbanyan/.claude/get-shit-done/workflows/execute-plan.md @/Users/gbanyan/.claude/get-shit-done/templates/summary.md </execution_context>
@.planning/PROJECT.md @.planning/ROADMAP.md @.planning/STATE.md @.planning/phases/04-scoring-integration/04-RESEARCH.md @src/usher_pipeline/config/schema.py @src/usher_pipeline/persistence/duckdb_store.py @src/usher_pipeline/evidence/gnomad/load.py Task 1: Known gene compilation and ScoringWeights validation src/usher_pipeline/scoring/__init__.py src/usher_pipeline/scoring/known_genes.py src/usher_pipeline/config/schema.py 1. Create `src/usher_pipeline/scoring/__init__.py` with exports for the module.-
Create
src/usher_pipeline/scoring/known_genes.py:- Define
OMIM_USHER_GENESas a frozenset of 10 known Usher syndrome gene symbols: MYO7A, USH1C, CDH23, PCDH15, USH1G (SANS), CIB2, USH2A, ADGRV1 (GPR98), WHRN, CLRN1. Include a brief docstring noting these are OMIM Usher syndrome entries. - Define
SYSCILIA_SCGS_V2_COREas a frozenset of well-known ciliary genes that serve as positive controls. Include at minimum: IFT88, IFT140, IFT172, BBS1, BBS2, BBS4, BBS5, BBS7, BBS9, BBS10, RPGRIP1L, CEP290, ARL13B, INPP5E, TMEM67, CC2D2A, NPHP1, NPHP3, NPHP4, RPGR, CEP164, OFD1, MKS1, TCTN1, TCTN2, TMEM216, TMEM231, TMEM138. This is a curated subset (~30 genes) of the full SCGS v2 list (686 genes). Add a docstring noting the full list can be downloaded from the SCGS v2 publication supplementary data (DOI: 10.1091/mbc.E21-05-0226) and loaded via a futurefetch_scgs_v2()function. - Create function
compile_known_genes() -> pl.DataFramethat returns a polars DataFrame with columns:gene_symbol(str),source(str: "omim_usher" or "syscilia_scgs_v2"),confidence(str: "HIGH"). Combines both gene sets. De-duplicates on gene_symbol (if any gene appears in both lists, keep both source entries as separate rows). - Create function
load_known_genes_to_duckdb(store: PipelineStore) -> intthat callscompile_known_genes(), saves to DuckDB tableknown_cilia_genesusingstore.save_dataframe(), and returns the count of unique gene symbols.
- Define
-
Update
src/usher_pipeline/config/schema.py:- Add a
validate_sum(self) -> Nonemethod to theScoringWeightsclass that sums all 6 weight fields and raisesValueErrorif the absolute difference from 1.0 exceeds 1e-6. Message format:f"Scoring weights must sum to 1.0, got {total:.6f}". - Do NOT change any existing field defaults or field definitions -- only add the method.
Run:
cd /Users/gbanyan/Project/usher-exploring && python -c " from usher_pipeline.scoring.known_genes import compile_known_genes, OMIM_USHER_GENES, SYSCILIA_SCGS_V2_CORE from usher_pipeline.config.schema import ScoringWeights df = compile_known_genes() print(f'Known genes: {df.height} rows, {df[\"gene_symbol\"].n_unique()} unique symbols') assert df.height >= 38, f'Expected >= 38 rows, got {df.height}' assert 'MYO7A' in df['gene_symbol'].to_list() assert 'IFT88' in df['gene_symbol'].to_list() w = ScoringWeights() w.validate_sum() # Should pass with defaults print('ScoringWeights.validate_sum() passed with defaults') try: w2 = ScoringWeights(gnomad=0.5) w2.validate_sum() print('ERROR: Should have raised ValueError') except ValueError as e: print(f'Correctly rejected invalid weights: {e}') print('All checks passed') " - OMIM_USHER_GENES contains exactly 10 known Usher syndrome genes
- SYSCILIA_SCGS_V2_CORE contains >= 25 core ciliary genes
- compile_known_genes() returns DataFrame with gene_symbol, source, confidence columns
- ScoringWeights.validate_sum() passes with defaults, raises ValueError when weights do not sum to 1.0
- Add a
Import: duckdb, polars, structlog, ScoringWeights from config.schema, PipelineStore from persistence.
Create function join_evidence_layers(store: PipelineStore) -> pl.DataFrame:
- Execute a DuckDB SQL query using
store.conn(direct DuckDB connection) that LEFT JOINsgene_universewith all 6 evidence tables ongene_id:gnomad_constraint->loeuf_normalizedASgnomad_scoretissue_expression->expression_score_normalizedASexpression_scoreannotation_completeness->annotation_score_normalizedASannotation_scoresubcellular_localization->localization_score_normalizedASlocalization_scoreanimal_model_phenotypes->animal_model_score_normalizedASanimal_model_scoreliterature_evidence->literature_score_normalizedASliterature_score
- Compute
evidence_countas the count of non-NULL scores (sum of CASE WHEN ... IS NOT NULL THEN 1 ELSE 0 END for all 6 layers). - Select
gene_id,gene_symbolfromgene_universe, plus all 6 aliased scores andevidence_count. - Return result as polars DataFrame via
.pl(). - Log the total gene count, mean evidence_count, and per-layer NULL rates using structlog.
Create function compute_composite_scores(store: PipelineStore, weights: ScoringWeights) -> pl.DataFrame:
- Call
weights.validate_sum()first to assert valid weights. - Execute a DuckDB SQL query that:
a. Uses the same join as
join_evidence_layers(or call it as a CTE / subquery). b. Computesavailable_weight= sum of weights for non-NULL layers (using CASE WHEN ... IS NOT NULL THEN weight_value ELSE 0 END for each layer). c. Computesweighted_sum= sum of COALESCE(score * weight, 0) for each layer. d. Computescomposite_score= CASE WHEN available_weight > 0 THEN weighted_sum / available_weight ELSE NULL END. e. Computesquality_flag:evidence_count >= 4-> 'sufficient_evidence'evidence_count >= 2-> 'moderate_evidence'evidence_count >= 1-> 'sparse_evidence'- ELSE 'no_evidence'
f. Includes all individual layer scores for explainability.
g. Includes per-layer contribution columns:
gnomad_contribution= gnomad_score * gnomad_weight (NULL if score is NULL), etc. h. Orders by composite_score DESC NULLS LAST.
- Return as polars DataFrame.
- Log summary stats: total genes, genes with composite score, mean/median composite score, quality flag distribution.
Create function persist_scored_genes(store: PipelineStore, scored_df: pl.DataFrame, weights: ScoringWeights) -> None:
- Save
scored_dfto DuckDB tablescored_genesviastore.save_dataframe()with replace=True. - Description: "Multi-evidence weighted composite scores with per-layer contributions".
- Log the row count and quality flag distribution.
- Update
src/usher_pipeline/scoring/__init__.pyto export:compile_known_genes,load_known_genes_to_duckdb,join_evidence_layers,compute_composite_scores,persist_scored_genes. Run: `cd /Users/gbanyan/Project/usher-exploring && python -c " from usher_pipeline.scoring.integration import join_evidence_layers, compute_composite_scores, persist_scored_genes from usher_pipeline.config.schema import ScoringWeights import inspect
Verify function signatures exist and have correct params
sig_join = inspect.signature(join_evidence_layers) assert 'store' in sig_join.parameters sig_score = inspect.signature(compute_composite_scores) assert 'store' in sig_score.parameters assert 'weights' in sig_score.parameters sig_persist = inspect.signature(persist_scored_genes) assert 'store' in sig_persist.parameters print('All function signatures verified') print('Source contains COALESCE:', 'COALESCE' in inspect.getsource(compute_composite_scores)) print('Source contains LEFT JOIN:', 'LEFT JOIN' in inspect.getsource(join_evidence_layers)) "` - join_evidence_layers() LEFT JOINs gene_universe with all 6 evidence tables on gene_id, returns DataFrame with gene_id, gene_symbol, 6 score columns, evidence_count - compute_composite_scores() computes weighted average of available evidence only (weighted_sum / available_weight), with quality_flag and per-layer contributions - NULL scores are not replaced with zero in the weighted average -- only available evidence contributes - persist_scored_genes() saves scored_genes table to DuckDB
- `src/usher_pipeline/scoring/` module exists with `__init__.py`, `known_genes.py`, `integration.py` - Known gene set includes 10 OMIM Usher genes and 25+ SYSCILIA core ciliary genes - ScoringWeights.validate_sum() enforces weight sum constraint - Integration SQL uses LEFT JOINs preserving NULLs and COALESCE for weighted scoring - No evidence layer with NULL score contributes to composite (weighted_sum / available_weight pattern)<success_criteria>
- compile_known_genes() returns polars DataFrame with >= 38 rows of known cilia/Usher genes
- compute_composite_scores() produces composite_score using weighted average of available evidence
- Genes with 0 evidence layers get composite_score = NULL (not 0)
- ScoringWeights with defaults passes validate_sum(); invalid weights raise ValueError
- All functions importable from usher_pipeline.scoring </success_criteria>