--- phase: 04-scoring-integration plan: 03 type: execute wave: 3 depends_on: ["04-01", "04-02"] files_modified: - src/usher_pipeline/cli/score_cmd.py - src/usher_pipeline/cli/main.py - tests/test_scoring.py - tests/test_scoring_integration.py autonomous: true must_haves: truths: - "CLI 'usher-pipeline score' command orchestrates full scoring pipeline with checkpoint-restart" - "Scoring pipeline can be run end-to-end on synthetic test data" - "Unit tests verify NULL preservation, weight validation, and known gene compilation" - "Integration test verifies full scoring pipeline with synthetic evidence data" artifacts: - path: "src/usher_pipeline/cli/score_cmd.py" provides: "CLI command for scoring pipeline orchestration" contains: "click.command" - path: "tests/test_scoring.py" provides: "Unit tests for scoring module" contains: "test_compile_known_genes" - path: "tests/test_scoring_integration.py" provides: "Integration tests for full scoring pipeline" contains: "test_scoring_pipeline" key_links: - from: "src/usher_pipeline/cli/score_cmd.py" to: "src/usher_pipeline/scoring/" via: "imports integration, known_genes, quality_control, validation" pattern: "from usher_pipeline.scoring import" - from: "src/usher_pipeline/cli/main.py" to: "src/usher_pipeline/cli/score_cmd.py" via: "cli.add_command(score)" pattern: "add_command.*score" - from: "tests/test_scoring_integration.py" to: "src/usher_pipeline/scoring/integration.py" via: "synthetic DuckDB data -> compute_composite_scores" pattern: "compute_composite_scores" --- Create CLI score command and comprehensive tests for the scoring module. Purpose: The CLI command provides the user-facing interface for running the scoring pipeline (integrating all evidence, running QC, validating against known genes). Tests ensure correctness of NULL handling, weight validation, and end-to-end scoring with synthetic data. Output: `src/usher_pipeline/cli/score_cmd.py`, `tests/test_scoring.py`, `tests/test_scoring_integration.py`. @/Users/gbanyan/.claude/get-shit-done/workflows/execute-plan.md @/Users/gbanyan/.claude/get-shit-done/templates/summary.md @.planning/PROJECT.md @.planning/ROADMAP.md @.planning/STATE.md @.planning/phases/04-scoring-integration/04-RESEARCH.md @.planning/phases/04-scoring-integration/04-01-SUMMARY.md @.planning/phases/04-scoring-integration/04-02-SUMMARY.md @src/usher_pipeline/cli/evidence_cmd.py @src/usher_pipeline/cli/main.py @src/usher_pipeline/scoring/__init__.py Task 1: CLI score command with checkpoint-restart src/usher_pipeline/cli/score_cmd.py src/usher_pipeline/cli/main.py 1. Create `src/usher_pipeline/cli/score_cmd.py` following the established pattern from `evidence_cmd.py`: Import: click, structlog, sys, Path, load_config, PipelineStore, ProvenanceTracker, and from scoring module: load_known_genes_to_duckdb, compute_composite_scores, persist_scored_genes, run_qc_checks, validate_known_gene_ranking, generate_validation_report. Import ScoringWeights from config.schema. Create Click command `score` (not a group -- single command): - Options: - `--force` (is_flag): Re-run scoring even if scored_genes checkpoint exists - `--skip-qc` (is_flag): Skip quality control checks (for faster iteration) - `--skip-validation` (is_flag): Skip known gene validation - Uses `@click.pass_context` to get config_path from `ctx.obj['config_path']` Implementation flow (follows evidence_cmd.py pattern): a. Load config, initialize store and provenance b. Check checkpoint: `store.has_checkpoint('scored_genes')` -- if exists and not --force, show summary and return c. Load and validate scoring weights: `config.scoring`, call `validate_sum()` d. Step 1 - Load known genes: call `load_known_genes_to_duckdb(store)`, display count e. Step 2 - Compute composite scores: call `compute_composite_scores(store, config.scoring)`, display summary (total genes, mean score, quality flag distribution) f. Step 3 - Persist scores: call `persist_scored_genes(store, scored_df, config.scoring)` g. Step 4 (unless --skip-qc) - Run QC: call `run_qc_checks(store)`, display warnings/errors, log missing data rates h. Step 5 (unless --skip-validation) - Validate: call `validate_known_gene_ranking(store)`, display results with `generate_validation_report()` i. Save provenance sidecar to `data_dir/scoring/scoring.provenance.json` j. Display final summary: total scored genes, mean composite score, quality flag counts, QC pass/fail, validation pass/fail Use Click styling consistent with evidence_cmd.py: `click.style("=== Title ===", bold=True)`, green for success, yellow for warnings, red for errors. Error handling: wrap each step in try/except, display error with click.style(fg='red'), sys.exit(1). Always close store in finally block. 2. Update `src/usher_pipeline/cli/main.py`: - Import score command from score_cmd.py - Add it to the CLI group: `cli.add_command(score)` (same pattern as evidence command) - The score command should be a top-level command (not nested under evidence), since it's a different pipeline phase Run: `cd /Users/gbanyan/Project/usher-exploring && python -c " from usher_pipeline.cli.score_cmd import score import click.testing runner = click.testing.CliRunner() result = runner.invoke(score, ['--help']) print(result.output) assert result.exit_code == 0 assert '--force' in result.output assert '--skip-qc' in result.output assert '--skip-validation' in result.output print('CLI score command --help works') " && python -c " from usher_pipeline.cli.main import cli import click.testing runner = click.testing.CliRunner() result = runner.invoke(cli, ['--help']) print(result.output) assert 'score' in result.output, 'score command not registered in main CLI' print('Score command registered in main CLI') "` - `usher-pipeline score` command exists with --force, --skip-qc, --skip-validation options - Score command registered in main CLI group - Follows established pattern: config load -> checkpoint check -> process -> persist -> provenance - Orchestrates full pipeline: known genes -> scoring -> QC -> validation Task 2: Unit and integration tests for scoring module tests/test_scoring.py tests/test_scoring_integration.py 1. Create `tests/test_scoring.py` with unit tests: Import: pytest, polars, from scoring module all functions, ScoringWeights. Test class or functions: a. `test_compile_known_genes_returns_expected_structure`: - Call compile_known_genes() - Assert returns polars DataFrame with columns: gene_symbol, source, confidence - Assert height >= 38 (10 Usher + 28+ SYSCILIA) - Assert "MYO7A" in gene_symbol values - Assert "IFT88" in gene_symbol values - Assert all confidence values == "HIGH" - Assert sources include both "omim_usher" and "syscilia_scgs_v2" b. `test_compile_known_genes_no_duplicates_within_source`: - Verify no duplicate gene_symbol within the same source - (A gene CAN appear in both sources as separate rows) c. `test_scoring_weights_validate_sum_defaults`: - ScoringWeights() with defaults should pass validate_sum() d. `test_scoring_weights_validate_sum_custom_valid`: - ScoringWeights with custom weights summing to 1.0 should pass e. `test_scoring_weights_validate_sum_invalid`: - ScoringWeights(gnomad=0.5) sums to 1.35 -> validate_sum() raises ValueError f. `test_scoring_weights_validate_sum_close_to_one`: - Weights that sum to 0.999999 (within 1e-6) should pass - Weights that sum to 0.99 should fail g. `test_null_preservation_in_composite`: - Create a synthetic PipelineStore (in-memory DuckDB: `duckdb.connect(':memory:')`) - Create a minimal gene_universe table with 3 genes - Create gnomad_constraint table with scores for genes 1 and 2 (gene 3 has no entry) - Create annotation_completeness with scores for gene 1 only - Create empty/missing entries for other evidence tables (create them with no rows or only partial rows) - Call join_evidence_layers and verify gene 3 has NULL gnomad_score and NULL annotation_score - Call compute_composite_scores and verify gene 3 with zero evidence layers has composite_score = NULL 2. Create `tests/test_scoring_integration.py` with integration tests: a. `test_scoring_pipeline_end_to_end`: - Create in-memory PipelineStore (wrap duckdb.connect(':memory:') in a PipelineStore-like interface, OR create tmp file with pytest tmp_path) - Create synthetic tables for all 7 tables (gene_universe + 6 evidence): - gene_universe: 20 genes (gene_001 through gene_020) with gene_symbols - Include some known genes (MYO7A, IFT88, CDH23) in the gene universe as genes 18-20 - gnomad_constraint: 15 genes with loeuf_normalized scores, 5 NULL - tissue_expression: 12 genes with expression_score_normalized, 8 NULL - annotation_completeness: 18 genes with annotation_score_normalized - subcellular_localization: 10 genes with localization_score_normalized - animal_model_phenotypes: 8 genes with animal_model_score_normalized - literature_evidence: 14 genes with literature_score_normalized - Give known genes (MYO7A, IFT88, CDH23) HIGH scores in multiple layers (0.8-0.95) to ensure they rank highly - Run compute_composite_scores with default ScoringWeights - Assert: all 20 genes present in result - Assert: composite_score is not NULL for genes with at least 1 evidence layer - Assert: evidence_count values are correct (count of non-NULL scores) - Assert: quality_flag values are correct based on evidence_count - Assert: known genes (MYO7A, IFT88, CDH23) have high composite scores (among top 5) b. `test_qc_detects_missing_data`: - Create scored_genes table where one layer is 90% NULL - Run run_qc_checks - Assert that layer appears in errors (>80% missing) c. `test_validation_passes_with_known_genes_ranked_highly`: - Use scored_genes from end-to-end test (known genes scored highly) - Run validate_known_gene_ranking - Assert validation_passed is True Use `tmp_path` fixture for DuckDB file-based stores. Use `PipelineStore(tmp_path / "test.duckdb")` for store creation. Follow existing test patterns from tests/test_gnomad_integration.py. Run: `cd /Users/gbanyan/Project/usher-exploring && python -m pytest tests/test_scoring.py tests/test_scoring_integration.py -v --tb=short 2>&1 | tail -30` - test_scoring.py: 7+ unit tests covering known genes, weight validation, NULL preservation - test_scoring_integration.py: 3+ integration tests covering end-to-end pipeline with synthetic data - All tests pass with `pytest tests/test_scoring.py tests/test_scoring_integration.py` - Tests verify NULL preservation (genes with no evidence get NULL composite score) - Tests verify known genes rank highly when given high scores - `usher-pipeline score --help` shows available options - Score command registered in main CLI - Unit tests pass: known genes, weight validation, NULL handling - Integration tests pass: end-to-end scoring with synthetic data, QC detection, validation - All tests runnable with `pytest tests/test_scoring*.py` - CLI score command orchestrates: known genes -> composite scoring -> QC -> validation - Checkpoint-restart: skips if scored_genes table exists (unless --force) - pytest tests/test_scoring.py passes all unit tests - pytest tests/test_scoring_integration.py passes all integration tests - Tests use synthetic data (no external API calls, fast, reproducible) After completion, create `.planning/phases/04-scoring-integration/04-03-SUMMARY.md`