--- phase: 04-scoring-integration plan: 02 type: execute wave: 2 depends_on: ["04-01"] files_modified: - src/usher_pipeline/scoring/quality_control.py - src/usher_pipeline/scoring/validation.py - src/usher_pipeline/scoring/__init__.py autonomous: true must_haves: truths: - "Quality control detects missing data rates per evidence layer and flags layers above threshold" - "Score distribution anomalies (no variation, out-of-range values) are detected per layer" - "Outlier genes are identified using MAD-based robust detection per evidence layer" - "Known cilia/Usher genes rank in top quartile of composite scores before exclusion" artifacts: - path: "src/usher_pipeline/scoring/quality_control.py" provides: "QC checks for missing data, distributions, outliers" contains: "median_absolute_deviation" - path: "src/usher_pipeline/scoring/validation.py" provides: "Positive control validation against known gene ranking" contains: "PERCENT_RANK" key_links: - from: "src/usher_pipeline/scoring/quality_control.py" to: "DuckDB scored_genes table" via: "store.conn.execute SQL queries" pattern: "scored_genes" - from: "src/usher_pipeline/scoring/validation.py" to: "src/usher_pipeline/scoring/known_genes.py" via: "compile_known_genes import" pattern: "compile_known_genes" - from: "src/usher_pipeline/scoring/validation.py" to: "DuckDB scored_genes table" via: "PERCENT_RANK window function" pattern: "PERCENT_RANK.*ORDER BY.*composite_score" --- Implement quality control checks and positive control validation for the scoring system. Purpose: QC catches upstream failures (high missing data rates, distribution anomalies, normalization bugs, outliers) before results are trusted. Positive control validation confirms known cilia/Usher genes rank highly, proving the scoring logic works correctly. Both are essential for scoring system credibility. Output: `src/usher_pipeline/scoring/quality_control.py` and `src/usher_pipeline/scoring/validation.py`. @/Users/gbanyan/.claude/get-shit-done/workflows/execute-plan.md @/Users/gbanyan/.claude/get-shit-done/templates/summary.md @.planning/PROJECT.md @.planning/ROADMAP.md @.planning/STATE.md @.planning/phases/04-scoring-integration/04-RESEARCH.md @.planning/phases/04-scoring-integration/04-01-SUMMARY.md @src/usher_pipeline/scoring/integration.py @src/usher_pipeline/scoring/known_genes.py @src/usher_pipeline/persistence/duckdb_store.py Task 1: Quality control checks for scoring results src/usher_pipeline/scoring/quality_control.py 1. Create `src/usher_pipeline/scoring/quality_control.py`: Import: numpy, polars, structlog, PipelineStore from persistence. Import scipy.stats for MAD-based outlier detection (add `scipy>=1.14` to project dependencies if not present -- check pyproject.toml first). Define constants: - `MISSING_RATE_WARN = 0.5` (50% missing = warning) - `MISSING_RATE_ERROR = 0.8` (80% missing = error) - `MIN_STD_THRESHOLD = 0.01` (std < 0.01 = no variation warning) - `OUTLIER_MAD_THRESHOLD = 3.0` (>3 MAD from median = outlier) - `EVIDENCE_LAYERS` = list of 6 layer names: ["gnomad", "expression", "annotation", "localization", "animal_model", "literature"] - `SCORE_COLUMNS` = dict mapping layer name to column name: {"gnomad": "gnomad_score", "expression": "expression_score", "annotation": "annotation_score", "localization": "localization_score", "animal_model": "animal_model_score", "literature": "literature_score"} Create function `compute_missing_data_rates(store: PipelineStore) -> dict`: - Query `scored_genes` table to compute fraction of NULL values per score column. - Use a single SQL query: `SELECT COUNT(*) AS total, AVG(CASE WHEN col IS NULL THEN 1.0 ELSE 0.0 END) AS col_missing ...` for all 6 columns. - Return dict with keys: "rates" (dict[str, float] per layer), "warnings" (list of str), "errors" (list of str). - Classify: rate > MISSING_RATE_ERROR -> add to errors; rate > MISSING_RATE_WARN -> add to warnings. - Log each layer's rate with appropriate level (error/warning/info). Create function `compute_distribution_stats(store: PipelineStore) -> dict`: - For each evidence layer, query non-NULL scores from `scored_genes`. - Compute: mean, median, std, min, max using numpy on the extracted array. - Detect anomalies: - std < MIN_STD_THRESHOLD -> warning "no variation" - min < 0.0 or max > 1.0 -> error "out of range" - Return dict with keys: "distributions" (dict per layer with stats), "warnings", "errors". Create function `detect_outliers(store: PipelineStore) -> dict`: - For each evidence layer, query gene_symbol + score from `scored_genes` where score IS NOT NULL. - Compute MAD: `median(|scores - median(scores)|)`. - If MAD == 0, skip (no variation). Otherwise, flag genes where `|score - median| > OUTLIER_MAD_THRESHOLD * MAD`. - Return dict with keys per layer: "count" (int), "example_genes" (list of up to 5 gene symbols). - Log outlier counts per layer. Create function `run_qc_checks(store: PipelineStore) -> dict`: - Orchestrates all three checks above. - Returns combined dict with keys: "missing_data", "distributions", "outliers", "composite_stats", "warnings" (combined list), "errors" (combined list), "passed" (bool: True if no errors). - Also compute composite score distribution: mean, median, std, percentiles (p10, p25, p50, p75, p90) from `scored_genes` WHERE composite_score IS NOT NULL. - Log final QC summary: total warnings, total errors, pass/fail. Note: Use numpy for statistics (scipy.stats.median_abs_deviation can be used for MAD, or compute manually with np.median(np.abs(x - np.median(x)))). Keep scipy import conditional or direct -- either approach is fine as long as outlier detection works. Run: `cd /Users/gbanyan/Project/usher-exploring && python -c " from usher_pipeline.scoring.quality_control import ( compute_missing_data_rates, compute_distribution_stats, detect_outliers, run_qc_checks, MISSING_RATE_WARN, MISSING_RATE_ERROR, OUTLIER_MAD_THRESHOLD, EVIDENCE_LAYERS, SCORE_COLUMNS, ) import inspect print('Constants:') print(f' MISSING_RATE_WARN={MISSING_RATE_WARN}') print(f' MISSING_RATE_ERROR={MISSING_RATE_ERROR}') print(f' OUTLIER_MAD_THRESHOLD={OUTLIER_MAD_THRESHOLD}') print(f' EVIDENCE_LAYERS={EVIDENCE_LAYERS}') print(f' SCORE_COLUMNS has {len(SCORE_COLUMNS)} entries') assert len(EVIDENCE_LAYERS) == 6 assert len(SCORE_COLUMNS) == 6 # Verify function signatures for fn in [compute_missing_data_rates, compute_distribution_stats, detect_outliers, run_qc_checks]: sig = inspect.signature(fn) assert 'store' in sig.parameters, f'{fn.__name__} missing store param' print('All QC functions verified') "` - compute_missing_data_rates() queries NULL rates per layer from scored_genes with warning/error classification - compute_distribution_stats() computes mean/median/std/min/max per layer and detects anomalies (no variation, out of range) - detect_outliers() uses MAD-based detection (>3 MAD from median) per layer - run_qc_checks() orchestrates all checks and returns combined results with pass/fail status Task 2: Positive control validation against known gene rankings src/usher_pipeline/scoring/validation.py src/usher_pipeline/scoring/__init__.py 1. Create `src/usher_pipeline/scoring/validation.py`: Import: duckdb, polars, structlog, PipelineStore, compile_known_genes from scoring.known_genes. Create function `validate_known_gene_ranking(store: PipelineStore, percentile_threshold: float = 0.75) -> dict`: - Call `compile_known_genes()` to get known gene DataFrame. - Register the known genes DataFrame as a temporary DuckDB table: `store.conn.execute("CREATE OR REPLACE TEMP TABLE _known_genes AS SELECT * FROM known_df")` (where known_df is the polars DataFrame variable). - Execute a DuckDB SQL query that: a. Computes PERCENT_RANK() OVER (ORDER BY composite_score) for ALL genes in scored_genes (not just known genes). b. INNER JOINs with `_known_genes` on gene_symbol to get percentile ranks for known genes only. c. Filters WHERE composite_score IS NOT NULL. d. Returns gene_symbol, composite_score, source, percentile_rank. - Compute validation metrics from the result: - `total_known_in_dataset`: count of known genes found in scored_genes - `total_known_expected`: count of unique gene_symbols in known gene list - `median_percentile`: median of percentile_rank values - `top_quartile_count`: count where percentile_rank >= 0.75 - `top_quartile_fraction`: top_quartile_count / total_known_in_dataset - `validation_passed`: median_percentile >= percentile_threshold - `known_gene_details`: list of dicts with gene_symbol, composite_score, percentile_rank, source (sorted by percentile_rank descending, limited to top 20) - If no known genes found in scored_genes, return validation_passed=False with reason="no_known_genes_found". - Log validation results: passed/failed, median_percentile, top_quartile stats. - Drop the temp table after query: `store.conn.execute("DROP TABLE IF EXISTS _known_genes")`. - Return the metrics dict. Create function `generate_validation_report(metrics: dict) -> str`: - Produce a human-readable text report summarizing validation results. - Include: pass/fail status, median percentile, top quartile count/fraction, table of top-ranked known genes. - Format percentiles as percentages (e.g., "87.3%"). - Return the report as a string. 2. Update `src/usher_pipeline/scoring/__init__.py` to also export: `run_qc_checks`, `validate_known_gene_ranking`, `generate_validation_report`. Run: `cd /Users/gbanyan/Project/usher-exploring && python -c " from usher_pipeline.scoring.validation import validate_known_gene_ranking, generate_validation_report from usher_pipeline.scoring import ( compile_known_genes, load_known_genes_to_duckdb, join_evidence_layers, compute_composite_scores, persist_scored_genes, run_qc_checks, validate_known_gene_ranking, generate_validation_report, ) import inspect sig = inspect.signature(validate_known_gene_ranking) assert 'store' in sig.parameters assert 'percentile_threshold' in sig.parameters src = inspect.getsource(validate_known_gene_ranking) assert 'PERCENT_RANK' in src, 'Missing PERCENT_RANK window function' assert 'compile_known_genes' in src, 'Missing known genes integration' print('Validation function verified') print('All scoring module exports verified') "` - validate_known_gene_ranking() computes percentile ranks of known genes in scored_genes using PERCENT_RANK window function - Returns metrics dict with median_percentile, top_quartile_count/fraction, validation_passed boolean - generate_validation_report() produces human-readable text summary - All scoring module functions exported from __init__.py - Quality control detects missing data rates and classifies as warning (>50%) or error (>80%) - Distribution stats computed per layer with anomaly detection (no variation, out-of-range) - MAD-based outlier detection flags genes >3 MAD from median per layer - Known gene validation uses PERCENT_RANK before exclusion (not after filtering) - All functions importable from usher_pipeline.scoring - run_qc_checks() returns structured dict with missing_data, distributions, outliers, composite_stats, pass/fail - validate_known_gene_ranking() computes percentile ranks for known cilia/Usher genes - Validation checks median percentile against threshold (default 0.75 = top quartile) - generate_validation_report() produces readable text output - scipy used for MAD computation (or equivalent numpy manual calculation) After completion, create `.planning/phases/04-scoring-integration/04-02-SUMMARY.md`