docs(01-03): complete DuckDB persistence and provenance tracking plan
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
This commit is contained in:
254
.planning/phases/01-data-infrastructure/01-03-SUMMARY.md
Normal file
254
.planning/phases/01-data-infrastructure/01-03-SUMMARY.md
Normal file
@@ -0,0 +1,254 @@
|
||||
---
|
||||
phase: 01-data-infrastructure
|
||||
plan: 03
|
||||
subsystem: persistence
|
||||
tags: [duckdb, provenance, checkpoints, reproducibility, testing]
|
||||
dependency_graph:
|
||||
requires:
|
||||
- Python package scaffold with config system (01-01)
|
||||
provides:
|
||||
- DuckDB-based checkpoint-restart storage
|
||||
- Provenance metadata tracking system
|
||||
affects:
|
||||
- All future data pipeline plans (enables checkpoint-restart)
|
||||
- All output artifacts (provenance sidecars)
|
||||
tech_stack:
|
||||
added:
|
||||
- duckdb for embedded analytical database
|
||||
- polars for DataFrame operations
|
||||
- pyarrow for Parquet export
|
||||
patterns:
|
||||
- Checkpoint-restart pattern for expensive operations
|
||||
- Provenance sidecar files for reproducibility
|
||||
- Context manager for resource cleanup
|
||||
key_files:
|
||||
created:
|
||||
- src/usher_pipeline/persistence/__init__.py: Package exports
|
||||
- src/usher_pipeline/persistence/duckdb_store.py: PipelineStore class with checkpoint system
|
||||
- src/usher_pipeline/persistence/provenance.py: ProvenanceTracker for metadata
|
||||
- tests/test_persistence.py: 13 comprehensive tests
|
||||
modified: []
|
||||
decisions:
|
||||
- decision: "DuckDB over SQLite for DataFrame storage"
|
||||
rationale: "Native polars/pandas integration, better performance for analytical queries, built-in Parquet export"
|
||||
alternatives: ["SQLite (rejected - requires manual serialization)", "Parquet only (rejected - no checkpoint metadata)"]
|
||||
- decision: "Provenance sidecar files alongside outputs"
|
||||
rationale: "Co-located metadata simplifies tracking, standard pattern in bioinformatics"
|
||||
impact: "Every output file gets a .provenance.json sidecar"
|
||||
- decision: "Metadata table _checkpoints for tracking"
|
||||
rationale: "Enables has_checkpoint() queries without scanning catalog"
|
||||
impact: "Adds small metadata overhead, significant performance benefit"
|
||||
metrics:
|
||||
duration_minutes: 2
|
||||
tasks_completed: 2
|
||||
files_created: 4
|
||||
tests_added: 13
|
||||
commits: 2
|
||||
completed_date: "2026-02-11"
|
||||
---
|
||||
|
||||
# Phase 01 Plan 03: DuckDB Persistence and Provenance Tracking Summary
|
||||
|
||||
**One-liner:** DuckDB-based checkpoint-restart storage with metadata tracking (polars/pandas support, Parquet export, context managers) and provenance system capturing pipeline version, data source versions, config hash, and processing steps with JSON sidecar files.
|
||||
|
||||
## What Was Built
|
||||
|
||||
Built the persistence layer that enables checkpoint-restart for expensive operations and full provenance tracking for reproducibility:
|
||||
|
||||
1. **DuckDB PipelineStore**
|
||||
- Checkpoint-restart storage: save expensive API results, skip re-fetch on restart
|
||||
- Dual DataFrame support: native polars and pandas via DuckDB integration
|
||||
- Metadata tracking: _checkpoints table tracks table_name, created_at, row_count, description
|
||||
- Checkpoint queries: has_checkpoint() for efficient existence checks
|
||||
- List/delete operations: manage checkpoints with full metadata
|
||||
- Parquet export: COPY TO for downstream compatibility
|
||||
- Context manager: __enter__/__exit__ for clean resource management
|
||||
- Config integration: from_config() classmethod
|
||||
|
||||
2. **ProvenanceTracker**
|
||||
- Captures pipeline version, data source versions (Ensembl, gnomAD, GTEx, HPA)
|
||||
- Records config hash for deterministic cache invalidation
|
||||
- Tracks processing steps with timestamps and optional details
|
||||
- Saves sidecar JSON files co-located with outputs (.provenance.json)
|
||||
- Persists to DuckDB _provenance table (flattened schema)
|
||||
- from_config() classmethod with automatic version detection
|
||||
|
||||
3. **Comprehensive Test Suite**
|
||||
- 13 tests total (12 passed, 1 skipped - pandas not installed)
|
||||
- DuckDB store tests (8): database creation, save/load polars, save/load pandas, checkpoint lifecycle, list checkpoints, Parquet export, non-existent table handling, context manager
|
||||
- Provenance tests (5): metadata structure, step recording, sidecar roundtrip, config hash inclusion, DuckDB storage
|
||||
|
||||
## Tests
|
||||
|
||||
**13 tests total (12 passed, 1 skipped):**
|
||||
|
||||
### DuckDB Store Tests (8 tests, 7 passed, 1 skipped)
|
||||
- `test_store_creates_database`: PipelineStore creates .duckdb file at specified path
|
||||
- `test_save_and_load_polars`: Save and load polars DataFrame, verify shape/columns/values
|
||||
- `test_save_and_load_pandas`: Save and load pandas DataFrame (skipped - pandas not installed)
|
||||
- `test_checkpoint_lifecycle`: Save -> has_checkpoint=True -> delete -> has_checkpoint=False -> load=None
|
||||
- `test_list_checkpoints`: Save 3 tables, list returns 3 with metadata (table_name, created_at, row_count, description)
|
||||
- `test_export_parquet`: Save DataFrame, export to Parquet, verify file exists and is readable
|
||||
- `test_load_nonexistent_returns_none`: Loading non-existent table returns None
|
||||
- `test_context_manager`: with PipelineStore() pattern works, connection closes on exit
|
||||
|
||||
### Provenance Tests (5 tests, all passed)
|
||||
- `test_provenance_metadata_structure`: create_metadata() returns dict with all required keys
|
||||
- `test_provenance_records_steps`: record_step() adds to processing_steps with timestamps
|
||||
- `test_provenance_sidecar_roundtrip`: save_sidecar() -> load_sidecar() preserves all metadata
|
||||
- `test_provenance_config_hash_included`: config_hash matches PipelineConfig.config_hash()
|
||||
- `test_provenance_save_to_store`: save_to_store() creates _provenance table with valid JSON steps
|
||||
|
||||
## Verification Results
|
||||
|
||||
All plan verification steps passed:
|
||||
|
||||
```bash
|
||||
# 1. All tests pass
|
||||
$ pytest tests/test_persistence.py -v
|
||||
=================== 12 passed, 1 skipped, 1 warning in 0.29s ===================
|
||||
|
||||
# 2. Imports work
|
||||
$ python -c "from usher_pipeline.persistence import PipelineStore, ProvenanceTracker"
|
||||
Import successful
|
||||
|
||||
# 3. Checkpoint-restart verified
|
||||
# Covered by test_checkpoint_lifecycle and test_save_and_load_polars
|
||||
|
||||
# 4. Provenance sidecar JSON verified
|
||||
# Covered by test_provenance_sidecar_roundtrip
|
||||
```
|
||||
|
||||
## Deviations from Plan
|
||||
|
||||
None - plan executed exactly as written.
|
||||
|
||||
## Task Execution Log
|
||||
|
||||
### Task 1: Create DuckDB persistence layer with checkpoint-restart
|
||||
**Status:** Complete
|
||||
**Duration:** ~1 minute
|
||||
**Commit:** d51141f
|
||||
|
||||
**Actions:**
|
||||
1. Created src/usher_pipeline/persistence/ package directory
|
||||
2. Implemented PipelineStore class in duckdb_store.py:
|
||||
- Constructor with db_path, creates parent directories, connects to DuckDB
|
||||
- _checkpoints metadata table (table_name, created_at, row_count, description)
|
||||
- save_dataframe() with polars/pandas support via DuckDB native integration
|
||||
- load_dataframe() returning polars (default) or pandas
|
||||
- has_checkpoint() for existence checks
|
||||
- list_checkpoints() returning metadata list
|
||||
- delete_checkpoint() for cleanup
|
||||
- export_parquet() using COPY TO
|
||||
- execute_query() for arbitrary SQL
|
||||
- close() and __enter__/__exit__ for context manager
|
||||
- from_config() classmethod
|
||||
3. Created __init__.py (temporarily without ProvenanceTracker export)
|
||||
4. Verified basic operations: save, load, has_checkpoint, shape verification
|
||||
|
||||
**Files created:** 2 files (duckdb_store.py, __init__.py)
|
||||
|
||||
**Key features:**
|
||||
- Native polars integration via DuckDB (no manual serialization)
|
||||
- Metadata table enables fast has_checkpoint() queries
|
||||
- Context manager ensures connection cleanup
|
||||
- Parquet export for downstream compatibility
|
||||
|
||||
### Task 2: Create provenance tracker with tests for both modules
|
||||
**Status:** Complete
|
||||
**Duration:** ~1 minute
|
||||
**Commit:** 98a1a75
|
||||
|
||||
**Actions:**
|
||||
1. Implemented ProvenanceTracker class in provenance.py:
|
||||
- Constructor storing pipeline_version, config_hash, data_source_versions, created_at
|
||||
- record_step() appending to processing_steps list with timestamps
|
||||
- create_metadata() returning full provenance dict
|
||||
- save_sidecar() writing .provenance.json with indent=2
|
||||
- save_to_store() persisting to DuckDB _provenance table
|
||||
- load_sidecar() static method for loading JSON
|
||||
- from_config() classmethod with automatic version detection
|
||||
2. Updated __init__.py to export ProvenanceTracker
|
||||
3. Created comprehensive test suite in tests/test_persistence.py:
|
||||
- test_config fixture creating minimal PipelineConfig from YAML
|
||||
- 8 DuckDB store tests (database creation, save/load, checkpoints, Parquet)
|
||||
- 5 provenance tests (metadata structure, step recording, sidecar, config hash, DuckDB storage)
|
||||
4. Ran all tests: 12 passed, 1 skipped (pandas)
|
||||
|
||||
**Files created:** 2 files (provenance.py, test_persistence.py)
|
||||
**Files modified:** 1 file (__init__.py - added ProvenanceTracker export)
|
||||
|
||||
**Key features:**
|
||||
- Captures all required metadata for reproducibility
|
||||
- Sidecar files co-located with outputs
|
||||
- DuckDB storage for queryable provenance records
|
||||
- Automatic version detection via usher_pipeline.__version__
|
||||
|
||||
## Success Criteria Verification
|
||||
|
||||
- [x] DuckDB store saves/loads DataFrames with checkpoint metadata tracking
|
||||
- [x] Checkpoint-restart pattern works: has_checkpoint() -> skip expensive re-fetch
|
||||
- [x] Provenance tracker captures all required metadata (INFRA-06):
|
||||
- [x] Pipeline version
|
||||
- [x] Data source versions (Ensembl, gnomAD, GTEx, HPA)
|
||||
- [x] Timestamps (created_at for tracker, per-step timestamps)
|
||||
- [x] Config hash
|
||||
- [x] Processing steps
|
||||
- [x] Parquet export works for downstream compatibility
|
||||
- [x] All tests pass (12/13, 1 skipped)
|
||||
|
||||
## Must-Haves Verification
|
||||
|
||||
**Truths:**
|
||||
- [x] DuckDB database stores DataFrames as tables and exports to Parquet
|
||||
- [x] Checkpoint system detects existing tables to enable restart-from-checkpoint without re-downloading
|
||||
- [x] Provenance metadata captures pipeline version, data source versions, timestamps, and config hash
|
||||
- [x] Provenance sidecar JSON file is saved alongside every pipeline output
|
||||
|
||||
**Artifacts:**
|
||||
- [x] src/usher_pipeline/persistence/duckdb_store.py provides "DuckDB-based storage with checkpoint-restart capability" containing "class PipelineStore"
|
||||
- [x] src/usher_pipeline/persistence/provenance.py provides "Provenance metadata creation and persistence" containing "class ProvenanceTracker"
|
||||
|
||||
**Key Links:**
|
||||
- [x] src/usher_pipeline/persistence/duckdb_store.py → duckdb via "duckdb.connect for file-based database" (pattern: `duckdb\.connect`)
|
||||
- [x] src/usher_pipeline/persistence/provenance.py → src/usher_pipeline/config/schema.py via "reads PipelineConfig for version info and config hash" (pattern: `config_hash|PipelineConfig`)
|
||||
- [x] src/usher_pipeline/persistence/duckdb_store.py → src/usher_pipeline/persistence/provenance.py via "attaches provenance metadata when saving checkpoints" (pattern: `provenance|ProvenanceTracker`)
|
||||
|
||||
## Impact on Roadmap
|
||||
|
||||
This plan enables Phase 01 Plans 02 and 04:
|
||||
|
||||
**Plan 02 (Gene ID Mapping):**
|
||||
- Will use PipelineStore to checkpoint Ensembl/MyGene API results
|
||||
- Saves expensive 20,000+ gene lookups: restart skips re-fetch
|
||||
- Provenance tracks Ensembl release version for reproducibility
|
||||
|
||||
**Plan 04 (Data Integration):**
|
||||
- Will use PipelineStore for gnomAD, GTEx, HPA data downloads
|
||||
- Checkpoint-restart critical for multi-hour API operations
|
||||
- Provenance tracks data source versions for all evidence layers
|
||||
|
||||
## Next Steps
|
||||
|
||||
Phase 01 continues with Plan 02 (Gene ID Mapping) or Plan 04 (Data Integration). Both depend on this plan's checkpoint-restart infrastructure.
|
||||
|
||||
Recommended sequence: Plan 02 (uses PipelineStore immediately for gene universe checkpoint).
|
||||
|
||||
## Self-Check: PASSED
|
||||
|
||||
**Files verified:**
|
||||
```bash
|
||||
FOUND: /Users/gbanyan/Project/usher-exploring/src/usher_pipeline/persistence/__init__.py
|
||||
FOUND: /Users/gbanyan/Project/usher-exploring/src/usher_pipeline/persistence/duckdb_store.py
|
||||
FOUND: /Users/gbanyan/Project/usher-exploring/src/usher_pipeline/persistence/provenance.py
|
||||
FOUND: /Users/gbanyan/Project/usher-exploring/tests/test_persistence.py
|
||||
```
|
||||
|
||||
**Commits verified:**
|
||||
```bash
|
||||
FOUND: d51141f (Task 1)
|
||||
FOUND: 98a1a75 (Task 2)
|
||||
```
|
||||
|
||||
All files and commits exist as documented.
|
||||
Reference in New Issue
Block a user