# Session Initialization - PDF Signature Extraction Project **Purpose:** This document helps you (or another Claude instance) quickly understand the project state and continue working. --- ## Project Quick Summary **Goal:** Extract handwritten Chinese signatures from 86,073 PDF documents automatically. **Current Status:** ✅ Working solution with 70% recall, 100% precision (tested on 5 PDFs) **Approach:** Hybrid VLM name extraction + Computer Vision detection + VLM verification --- ## 🚀 Quick Start (Resume Work) ### If you want to continue testing: ```bash cd /Volumes/NV2/pdf_recognize source venv/bin/activate # Test with more files (edit line 425 in script) python extract_signatures_hybrid.py ``` ### If you want to review what was done: ```bash # Read the complete history less PROJECT_DOCUMENTATION.md # Check test results ls -lh /Volumes/NV2/PDF-Processing/signature-image-output/signatures/*.png ``` ### If you want to commit to git: ```bash # Follow the guide less COMMIT_SUMMARY.md ``` --- ## 📁 Key Files (What Each Does) ### Production Scripts ✅ - **extract_pages_from_csv.py** - Step 1: Extract pages from CSV (tested: 100 files) - **extract_signatures_hybrid.py** - Step 2: Extract signatures (CURRENT WORKING, tested: 5 files) - **extract_handwriting.py** - CV-only approach (component used in hybrid) ### Documentation 📚 - **PROJECT_DOCUMENTATION.md** - ⭐ READ THIS FIRST - Complete history of all 5 approaches tested - **README.md** - Quick start guide - **COMMIT_SUMMARY.md** - Git commit instructions - **SESSION_INIT.md** - This file (for session continuity) ### Configuration ⚙ïļ - **.gitignore** - Excludes diagnostic scripts and test outputs --- ## ðŸŽŊ Current Working Solution ### Architecture ``` 1. VLM extracts signature names: "å‘ĻåŊķč“Ū", "魏興æĩ·" 2. CV detects signature-like regions (5K-200K pixels) 3. VLM verifies each region against expected names 4. Save verified signatures: signature_å‘ĻåŊķč“Ū.png ``` ### Test Results (5 PDFs) | Metric | Value | |--------|-------| | Expected signatures | 10 | | Found signatures | 7 | | Recall | 70% | | Precision | 100% | | False positives | 0 | ### Why 30% Missing? - Computer vision parameters too conservative - Some signatures smaller/larger than 5K-200K pixel range - Aspect ratio filter (0.5-10) may exclude some signatures --- ## ⚠ïļ Critical Context (What You MUST Know) ### 1. VLM Coordinate System is UNRELIABLE ❌ **Discovery:** VLM (qwen2.5vl:32b) provides inaccurate coordinates. **Example:** - VLM said signatures at: top=58%, top=68% - Actual location: top=26% - Error: ~32% offset (NOT consistent across files!) **Test file:** `201301_2458_AI1_page4.pdf` - VLM correctly identifies 2 signatures: "å‘ĻåŊķč“Ū", "魏興æĩ·" - VLM coordinates extract 100% white/blank regions - This is why we abandoned coordinate-based approach **Evidence:** See diagnostic scripts and results in PROJECT_DOCUMENTATION.md ### 2. Name-Based Approach is the Solution ✅ Instead of using VLM coordinates: - ✅ Use VLM to extract **names** (reliable) - ✅ Use CV to find **locations** (pixel-accurate) - ✅ Use VLM to **verify** each region against names (accurate) ### 3. All Test PDFs Are Scanned Images - No searchable text layer - PDF text layer method (Method A) is **untested** - All current results use CV detection (Method B) --- ## 🔧 Configuration Details ### Ollama Setup ```python OLLAMA_URL = "http://192.168.30.36:11434" OLLAMA_MODEL = "qwen2.5vl:32b" ``` **Verify connection:** ```bash curl http://192.168.30.36:11434/api/tags ``` ### File Paths ```python PDF_INPUT_PATH = "/Volumes/NV2/PDF-Processing/signature-image-output" OUTPUT_PATH = "/Volumes/NV2/PDF-Processing/signature-image-output/signatures" REJECTED_PATH = ".../signatures/rejected" ``` ### CV Detection Parameters (adjust to improve recall) ```python # In extract_signatures_hybrid.py, detect_signature_regions_cv() MIN_CONTOUR_AREA = 5000 # ⮇ïļ Lower = catch smaller signatures MAX_CONTOUR_AREA = 200000 # ⮆ïļ Higher = catch larger signatures ASPECT_RATIO_MIN = 0.5 # ⮇ïļ Lower = catch taller signatures ASPECT_RATIO_MAX = 10.0 # ⮆ïļ Higher = catch wider signatures ``` --- ## 🎎 What Happened (Session History) ### Approaches Tested (Chronological) 1. **PDF Image Objects** → Abandoned (extracted full pages, not signatures) 2. **Simple Page Extraction** → ✅ Working (extract pages from CSV) 3. **Computer Vision Only** → Insufficient (6,420 regions from 100 pages - too many) 4. **VLM Coordinates** → ❌ Failed (coordinates unreliable, extracted blank regions) 5. **Hybrid Name-Based** → ✅ Current (70% recall, 100% precision) ### Key Decisions Made ✅ Use VLM for names, not coordinates ✅ Verify each region against expected names ✅ Save signatures with person names ✅ Reject regions that don't match any name ✅ Prevent duplicate signatures per person ### Diagnostic Work Done Created 11 diagnostic scripts to investigate VLM coordinate failure: - Visualized bounding boxes - Analyzed pixel content - Tested actual vs. reported locations - Confirmed coordinates 32% off on test file All findings documented in PROJECT_DOCUMENTATION.md --- ## 🚧 Known Issues & Next Steps ### Issue 1: 30% Missing Signatures **Status:** Open **Options:** 1. Widen CV parameter ranges (test with different thresholds) 2. Multi-pass detection with different kernels 3. Ask VLM for help when signatures missing 4. Manual review of rejected folder ### Issue 2: Text Layer Method Untested **Status:** Pending **Need:** PDFs with searchable text to test Method A ### Issue 3: Performance (24 sec/PDF) **Status:** Acceptable for now **Future:** Optimize if processing full 86K dataset --- ## 📊 Test Data Reference ### Test Files Used (5 PDFs) ``` 201301_1324_AI1_page3.pdf - ✅ Found 2/2: æĨŠæ™šæƒ , åžĩåŋ—銘 201301_2061_AI1_page5.pdf - ⚠ïļ Found 1/2: åŧ–é˜ŋį”š (missing 林å§ŋåĶĪ) 201301_2458_AI1_page4.pdf - ⚠ïļ Found 1/2: å‘ĻåŊķč“Ū (missing 魏興æĩ·) ← VLM coordinate test file 201301_2923_AI1_page3.pdf - ⚠ïļ Found 1/2: éŧ„į‘žåą• (missing 陈äļ―įĶ) 201301_3189_AI1_page3.pdf - ✅ Found 2/2: éŧ„čū‰, éŧ„į›Ščū‰ ``` ### Output Location ``` /Volumes/NV2/PDF-Processing/signature-image-output/signatures/ ├── 201301_1324_AI1_page3_signature_åžĩåŋ—銘.png ├── 201301_1324_AI1_page3_signature_æĨŠæ™šæƒ .png ├── 201301_2061_AI1_page5_signature_åŧ–é˜ŋį”š.png ├── 201301_2458_AI1_page4_signature_å‘ĻåŊķč“Ū.png ├── 201301_2923_AI1_page3_signature_éŧ„į‘žåą•.png ├── 201301_3189_AI1_page3_signature_éŧ„čū‰.png ├── 201301_3189_AI1_page3_signature_éŧ„į›Ščū‰.png └── rejected/ (non-signature regions) ``` --- ## ðŸ’Ą How to Continue Work ### Option 1: Improve Recall (Find Missing Signatures) **Goal:** Get from 70% to 90%+ recall **Approach:** 1. Read rejected folder to see if missing signatures were detected but rejected 2. Adjust CV parameters in `detect_signature_regions_cv()`: ```python MIN_CONTOUR_AREA = 3000 # Lower threshold MAX_CONTOUR_AREA = 300000 # Higher threshold ``` 3. Test on same 5 PDFs and compare results 4. If recall improves without too many false positives, proceed **Files to edit:** - `extract_signatures_hybrid.py` lines 178-214 ### Option 2: Scale Up Testing **Goal:** Test on 100 PDFs to verify reliability **Approach:** 1. Edit `extract_signatures_hybrid.py` line 425: ```python pdf_files = sorted(Path(PDF_INPUT_PATH).glob("*.pdf"))[:100] ``` 2. Run script (will take ~40 minutes) 3. Analyze results in log file 4. Calculate overall recall/precision ### Option 3: Prepare for Production **Goal:** Process all 86,073 files **Requirements:** 1. Verify current approach is acceptable (70% recall OK?) 2. Estimate time: 86K files × 24 sec/file = ~24 days 3. Consider parallel processing or optimization 4. Set up monitoring and resume capability ### Option 4: Commit Current State **Goal:** Save working solution to git **Steps:** 1. Read `COMMIT_SUMMARY.md` 2. Review files to commit 3. Run verification checks 4. Execute git commands 5. Tag release: `v1.0-hybrid-70percent` --- ## 🔍 How to Debug Issues ### If extraction fails: ```bash # Check Ollama connection curl http://192.168.30.36:11434/api/tags # Check input PDFs exist ls /Volumes/NV2/PDF-Processing/signature-image-output/*.pdf | head -5 # Run with single file for testing python -c "from extract_signatures_hybrid import *; process_pdf_page('/path/to/test.pdf', OUTPUT_PATH)" ``` ### If too many false positives: - Increase `MIN_CONTOUR_AREA` (filter out small regions) - Decrease `MAX_CONTOUR_AREA` (filter out large regions) - Check rejected folder to verify they're actually non-signatures ### If missing signatures: - Check rejected folder (might be detected but not verified) - Lower `MIN_CONTOUR_AREA` (catch smaller signatures) - Increase `MAX_CONTOUR_AREA` (catch larger signatures) - Widen aspect ratio range --- ## 📋 Session Handoff Checklist When starting a new session, provide this context: ✅ **Project Goal:** Extract Chinese signatures from 86K PDFs ✅ **Current Approach:** Hybrid VLM name + CV detection + VLM verification ✅ **Status:** Working at 70% recall, 100% precision on 5 test files ✅ **Key Context:** VLM coordinates unreliable (32% offset), use names instead ✅ **Key Files:** extract_signatures_hybrid.py (main), PROJECT_DOCUMENTATION.md (history) ✅ **Next Steps:** Improve recall OR scale up testing OR commit to git --- ## 🎓 Important Lessons Learned 1. **VLM spatial reasoning is unreliable** - Don't trust percentage-based coordinates 2. **VLM text recognition is excellent** - Use for extracting names, not locations 3. **Computer vision is precise** - Use for pixel-level location detection 4. **Name-based verification works** - Filters false positives effectively 5. **Diagnostic scripts are crucial** - Helped discover coordinate offset issue 6. **Conservative parameters** - Better to miss signatures than get false positives --- ## 📞 Quick Reference ### Most Important Command ```bash python extract_signatures_hybrid.py # Run signature extraction ``` ### Most Important File ```bash less PROJECT_DOCUMENTATION.md # Complete project history ``` ### Most Important Finding **VLM coordinates are unreliable → Use VLM for names, CV for locations** --- ## âœĻ Session Start Template **When starting a new session, say:** > "I'm continuing work on the PDF signature extraction project. Please read `/Volumes/NV2/pdf_recognize/SESSION_INIT.md` and `/Volumes/NV2/pdf_recognize/PROJECT_DOCUMENTATION.md` to understand the current state. > > Current status: Working hybrid approach with 70% recall on 5 test files. > > I want to: [choose one] > - Improve recall by tuning CV parameters > - Test on 100 PDFs to verify reliability > - Commit current solution to git > - Process full 86K dataset > - Debug a specific issue: [describe]" --- **Document Created:** October 26, 2025 **Last Updated:** October 26, 2025 **Status:** Ready for Next Session **Working Directory:** `/Volumes/NV2/pdf_recognize/`