Files
novelty-seeking/backend/app/routers/transformation.py
gbanyan 534fdbbcc4 feat: Add Expert Transformation Agent with multi-expert perspective system
- Backend: Add expert transformation router with 3-step SSE pipeline
  - Step 0: Generate diverse expert team (random domains)
  - Step 1: Each expert generates keywords for attributes
  - Step 2: Batch generate descriptions for expert keywords
- Backend: Add simplified prompts for reliable JSON output
- Frontend: Add TransformationPanel with React Flow visualization
- Frontend: Add TransformationInputPanel for expert configuration
  - Expert count (2-8), keywords per expert (1-3)
  - Custom expert domains support
- Frontend: Add expert keyword nodes with expert badges
- Frontend: Improve description card layout (wider cards, more spacing)
- Frontend: Add fallback for missing descriptions with visual indicators

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-03 16:26:17 +08:00

117 lines
4.3 KiB
Python

"""Transformation Agent 路由模組"""
import json
import logging
from typing import AsyncGenerator, List
from fastapi import APIRouter
from fastapi.responses import StreamingResponse
from ..models.schemas import (
TransformationRequest,
TransformationCategoryResult,
TransformationDescription,
)
from ..prompts.transformation_prompt import (
get_keyword_generation_prompt,
get_batch_description_prompt,
)
from ..services.llm_service import ollama_provider, extract_json_from_response
logger = logging.getLogger(__name__)
router = APIRouter(prefix="/api/transformation", tags=["transformation"])
async def generate_transformation_events(
request: TransformationRequest
) -> AsyncGenerator[str, None]:
"""Generate SSE events for transformation process"""
try:
temperature = request.temperature if request.temperature is not None else 0.7
model = request.model
# ========== Step 1: Generate new keywords ==========
yield f"event: keyword_start\ndata: {json.dumps({'message': f'為「{request.category}」生成新關鍵字...'}, ensure_ascii=False)}\n\n"
keyword_prompt = get_keyword_generation_prompt(
category=request.category,
attributes=request.attributes,
keyword_count=request.keyword_count
)
logger.info(f"Keyword prompt: {keyword_prompt[:200]}")
keyword_response = await ollama_provider.generate(
keyword_prompt, model=model, temperature=temperature
)
logger.info(f"Keyword response: {keyword_response[:500]}")
keyword_data = extract_json_from_response(keyword_response)
new_keywords = keyword_data.get("keywords", [])
yield f"event: keyword_complete\ndata: {json.dumps({'keywords': new_keywords}, ensure_ascii=False)}\n\n"
if not new_keywords:
yield f"event: error\ndata: {json.dumps({'error': '無法生成新關鍵字'}, ensure_ascii=False)}\n\n"
return
# ========== Step 2: Generate descriptions for each keyword ==========
yield f"event: description_start\ndata: {json.dumps({'message': '生成創新應用描述...'}, ensure_ascii=False)}\n\n"
# Use batch description prompt for efficiency
desc_prompt = get_batch_description_prompt(
query=request.query,
category=request.category,
keywords=new_keywords
)
logger.info(f"Description prompt: {desc_prompt[:300]}")
desc_response = await ollama_provider.generate(
desc_prompt, model=model, temperature=temperature
)
logger.info(f"Description response: {desc_response[:500]}")
desc_data = extract_json_from_response(desc_response)
descriptions_raw = desc_data.get("descriptions", [])
# Convert to TransformationDescription objects
descriptions: List[TransformationDescription] = []
for desc in descriptions_raw:
if isinstance(desc, dict) and "keyword" in desc and "description" in desc:
descriptions.append(TransformationDescription(
keyword=desc["keyword"],
description=desc["description"]
))
yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n"
# ========== Build final result ==========
result = TransformationCategoryResult(
category=request.category,
original_attributes=request.attributes,
new_keywords=new_keywords,
descriptions=descriptions
)
final_data = {
"result": result.model_dump()
}
yield f"event: done\ndata: {json.dumps(final_data, ensure_ascii=False)}\n\n"
except Exception as e:
logger.error(f"Transformation error: {e}")
yield f"event: error\ndata: {json.dumps({'error': str(e)}, ensure_ascii=False)}\n\n"
@router.post("/category")
async def transform_category(request: TransformationRequest):
"""處理單一類別的轉換"""
return StreamingResponse(
generate_transformation_events(request),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)