Files
novelty-seeking/backend/app/routers/expert_transformation.py
gbanyan 534fdbbcc4 feat: Add Expert Transformation Agent with multi-expert perspective system
- Backend: Add expert transformation router with 3-step SSE pipeline
  - Step 0: Generate diverse expert team (random domains)
  - Step 1: Each expert generates keywords for attributes
  - Step 2: Batch generate descriptions for expert keywords
- Backend: Add simplified prompts for reliable JSON output
- Frontend: Add TransformationPanel with React Flow visualization
- Frontend: Add TransformationInputPanel for expert configuration
  - Expert count (2-8), keywords per expert (1-3)
  - Custom expert domains support
- Frontend: Add expert keyword nodes with expert badges
- Frontend: Improve description card layout (wider cards, more spacing)
- Frontend: Add fallback for missing descriptions with visual indicators

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-03 16:26:17 +08:00

186 lines
7.9 KiB
Python

"""Expert Transformation Agent 路由模組"""
import json
import logging
from typing import AsyncGenerator, List
from fastapi import APIRouter
from fastapi.responses import StreamingResponse
from ..models.schemas import (
ExpertTransformationRequest,
ExpertProfile,
ExpertKeyword,
ExpertTransformationCategoryResult,
ExpertTransformationDescription,
)
from ..prompts.expert_transformation_prompt import (
get_expert_generation_prompt,
get_expert_keyword_generation_prompt,
get_expert_batch_description_prompt,
)
from ..services.llm_service import ollama_provider, extract_json_from_response
logger = logging.getLogger(__name__)
router = APIRouter(prefix="/api/expert-transformation", tags=["expert-transformation"])
async def generate_expert_transformation_events(
request: ExpertTransformationRequest,
all_categories: List[str] # For expert generation context
) -> AsyncGenerator[str, None]:
"""Generate SSE events for expert transformation process"""
try:
temperature = request.temperature if request.temperature is not None else 0.7
model = request.model
# ========== Step 0: Generate expert team ==========
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...'}, ensure_ascii=False)}\n\n"
experts: List[ExpertProfile] = []
try:
expert_prompt = get_expert_generation_prompt(
query=request.query,
categories=all_categories,
expert_count=request.expert_count,
custom_experts=request.custom_experts
)
logger.info(f"Expert prompt: {expert_prompt[:200]}")
expert_response = await ollama_provider.generate(
expert_prompt, model=model, temperature=temperature
)
logger.info(f"Expert response: {expert_response[:500]}")
expert_data = extract_json_from_response(expert_response)
experts_raw = expert_data.get("experts", [])
for exp in experts_raw:
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
experts.append(ExpertProfile(**exp))
except Exception as e:
logger.error(f"Failed to generate experts: {e}")
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n"
return
yield f"event: expert_complete\ndata: {json.dumps({'experts': [e.model_dump() for e in experts]}, ensure_ascii=False)}\n\n"
if not experts:
yield f"event: error\ndata: {json.dumps({'error': '無法生成專家團隊'}, ensure_ascii=False)}\n\n"
return
# ========== Step 1: Generate keywords from expert perspectives ==========
yield f"event: keyword_start\ndata: {json.dumps({'message': f'專家團隊為「{request.category}」的屬性生成關鍵字...'}, ensure_ascii=False)}\n\n"
all_expert_keywords: List[ExpertKeyword] = []
# For each attribute, ask all experts to generate keywords
for attr_index, attribute in enumerate(request.attributes):
try:
kw_prompt = get_expert_keyword_generation_prompt(
category=request.category,
attribute=attribute,
experts=[e.model_dump() for e in experts],
keywords_per_expert=request.keywords_per_expert
)
logger.info(f"Keyword prompt for '{attribute}': {kw_prompt[:300]}")
kw_response = await ollama_provider.generate(
kw_prompt, model=model, temperature=temperature
)
logger.info(f"Keyword response for '{attribute}': {kw_response[:500]}")
kw_data = extract_json_from_response(kw_response)
keywords_raw = kw_data.get("keywords", [])
# Add source_attribute to each keyword
for kw in keywords_raw:
if isinstance(kw, dict) and all(k in kw for k in ["keyword", "expert_id", "expert_name"]):
all_expert_keywords.append(ExpertKeyword(
keyword=kw["keyword"],
expert_id=kw["expert_id"],
expert_name=kw["expert_name"],
source_attribute=attribute
))
# Emit progress
yield f"event: keyword_progress\ndata: {json.dumps({'attribute': attribute, 'count': len(keywords_raw)}, ensure_ascii=False)}\n\n"
except Exception as e:
logger.warning(f"Failed to generate keywords for '{attribute}': {e}")
yield f"event: keyword_progress\ndata: {json.dumps({'attribute': attribute, 'count': 0, 'error': str(e)}, ensure_ascii=False)}\n\n"
# Continue with next attribute instead of stopping
yield f"event: keyword_complete\ndata: {json.dumps({'total_keywords': len(all_expert_keywords)}, ensure_ascii=False)}\n\n"
if not all_expert_keywords:
yield f"event: error\ndata: {json.dumps({'error': '無法生成關鍵字'}, ensure_ascii=False)}\n\n"
return
# ========== Step 2: Generate descriptions for each expert keyword ==========
yield f"event: description_start\ndata: {json.dumps({'message': '為專家關鍵字生成創新應用描述...'}, ensure_ascii=False)}\n\n"
descriptions: List[ExpertTransformationDescription] = []
try:
desc_prompt = get_expert_batch_description_prompt(
query=request.query,
category=request.category,
expert_keywords=[kw.model_dump() for kw in all_expert_keywords]
)
logger.info(f"Description prompt: {desc_prompt[:300]}")
desc_response = await ollama_provider.generate(
desc_prompt, model=model, temperature=temperature
)
logger.info(f"Description response: {desc_response[:500]}")
desc_data = extract_json_from_response(desc_response)
descriptions_raw = desc_data.get("descriptions", [])
for desc in descriptions_raw:
if isinstance(desc, dict) and all(k in desc for k in ["keyword", "expert_id", "expert_name", "description"]):
descriptions.append(ExpertTransformationDescription(**desc))
except Exception as e:
logger.warning(f"Failed to generate descriptions: {e}")
# Continue without descriptions - at least we have keywords
yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n"
# ========== Build final result ==========
result = ExpertTransformationCategoryResult(
category=request.category,
original_attributes=request.attributes,
expert_keywords=all_expert_keywords,
descriptions=descriptions
)
final_data = {
"result": result.model_dump(),
"experts": [e.model_dump() for e in experts]
}
yield f"event: done\ndata: {json.dumps(final_data, ensure_ascii=False)}\n\n"
except Exception as e:
logger.error(f"Expert transformation error: {e}", exc_info=True)
yield f"event: error\ndata: {json.dumps({'error': str(e)}, ensure_ascii=False)}\n\n"
@router.post("/category")
async def expert_transform_category(request: ExpertTransformationRequest):
"""處理單一類別的專家視角轉換"""
# Extract all categories from request (should be passed separately in production)
# For now, use just the single category
return StreamingResponse(
generate_expert_transformation_events(request, [request.category]),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)