- Add complete experiments directory with pilot study infrastructure - 5 experimental conditions (direct, expert-only, attribute-only, full-pipeline, random-perspective) - Human assessment tool with React frontend and FastAPI backend - AUT flexibility analysis with jump signal detection - Result visualization and metrics computation - Add novelty-driven agent loop module (experiments/novelty_loop/) - NoveltyDrivenTaskAgent with expert perspective perturbation - Three termination strategies: breakthrough, exhaust, coverage - Interactive CLI demo with colored output - Embedding-based novelty scoring - Add DDC knowledge domain classification data (en/zh) - Add CLAUDE.md project documentation - Update research report with experiment findings Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
112 lines
3.1 KiB
Python
112 lines
3.1 KiB
Python
"""
|
||
Condition 1: Direct Generation (Baseline)
|
||
|
||
Single LLM call asking for creative ideas directly.
|
||
No attribute decomposition, no expert perspectives.
|
||
"""
|
||
|
||
import sys
|
||
from pathlib import Path
|
||
|
||
# Add backend to path for imports
|
||
sys.path.insert(0, str(Path(__file__).parent.parent.parent / "backend"))
|
||
|
||
from typing import List, Dict, Any
|
||
from app.services.llm_service import ollama_provider, extract_json_from_response
|
||
from experiments.config import MODEL, TEMPERATURE, IDEAS_DIRECT, PROMPT_LANGUAGE
|
||
|
||
|
||
def get_direct_generation_prompt(query: str, idea_count: int, lang: str = "en") -> str:
|
||
"""Generate prompt for direct idea generation."""
|
||
if lang == "en":
|
||
return f"""/no_think
|
||
Generate {idea_count} creative and innovative ideas for "{query}".
|
||
|
||
Requirements:
|
||
1. Each idea should be specific and actionable
|
||
2. Ideas should be diverse, covering different aspects and applications
|
||
3. Include both practical improvements and creative innovations
|
||
4. Ideas should be 15-30 words each
|
||
|
||
Return JSON only:
|
||
{{"ideas": ["idea 1", "idea 2", "idea 3", ...]}}
|
||
|
||
Generate exactly {idea_count} ideas."""
|
||
else:
|
||
return f"""/no_think
|
||
為「{query}」生成 {idea_count} 個創意點子。
|
||
|
||
要求:
|
||
1. 每個點子要具體可行
|
||
2. 點子要多元,涵蓋不同面向和應用
|
||
3. 包含實用改進和創意創新
|
||
4. 每個點子 15-30 字
|
||
|
||
只回傳 JSON:
|
||
{{"ideas": ["點子1", "點子2", "點子3", ...]}}
|
||
|
||
生成正好 {idea_count} 個點子。"""
|
||
|
||
|
||
async def generate_ideas(
|
||
query: str,
|
||
model: str = None,
|
||
temperature: float = None,
|
||
idea_count: int = None,
|
||
lang: str = None
|
||
) -> Dict[str, Any]:
|
||
"""
|
||
Generate ideas using direct LLM generation (C1 baseline).
|
||
|
||
Args:
|
||
query: The object/concept to generate ideas for
|
||
model: LLM model to use (default from config)
|
||
temperature: Generation temperature (default from config)
|
||
idea_count: Number of ideas to generate (default from config)
|
||
lang: Language for prompts (default from config)
|
||
|
||
Returns:
|
||
Dict with ideas and metadata
|
||
"""
|
||
model = model or MODEL
|
||
temperature = temperature or TEMPERATURE
|
||
idea_count = idea_count or IDEAS_DIRECT
|
||
lang = lang or PROMPT_LANGUAGE
|
||
|
||
prompt = get_direct_generation_prompt(query, idea_count, lang)
|
||
|
||
response = await ollama_provider.generate(
|
||
prompt=prompt,
|
||
model=model,
|
||
temperature=temperature
|
||
)
|
||
|
||
result = extract_json_from_response(response)
|
||
ideas = result.get("ideas", [])
|
||
|
||
return {
|
||
"condition": "c1_direct",
|
||
"query": query,
|
||
"ideas": ideas,
|
||
"idea_count": len(ideas),
|
||
"metadata": {
|
||
"model": model,
|
||
"temperature": temperature,
|
||
"prompt_language": lang,
|
||
"mechanism": "direct_llm_generation"
|
||
}
|
||
}
|
||
|
||
|
||
# For testing
|
||
if __name__ == "__main__":
|
||
import asyncio
|
||
|
||
async def test():
|
||
result = await generate_ideas("Chair")
|
||
print(f"Generated {result['idea_count']} ideas:")
|
||
for i, idea in enumerate(result['ideas'], 1):
|
||
print(f" {i}. {idea}")
|
||
|
||
asyncio.run(test())
|