""" Condition 3: Attribute-Only (No Experts) Uses attribute decomposition to break down the query into structured categories, then generates ideas from each attribute. No expert perspectives involved. """ import sys from pathlib import Path # Add backend to path for imports sys.path.insert(0, str(Path(__file__).parent.parent.parent / "backend")) from typing import List, Dict, Any from app.services.llm_service import ollama_provider, extract_json_from_response from app.prompts.attribute_prompt import get_step1_dynamic_attributes_prompt from experiments.config import ( MODEL, TEMPERATURE, FIXED_CATEGORIES, PROMPT_LANGUAGE ) def get_attribute_idea_generation_prompt( query: str, category: str, attribute: str, idea_count: int, lang: str = "en" ) -> str: """Generate prompt for attribute-based idea generation.""" if lang == "en": return f"""/no_think Generate {idea_count} creative ideas for "{query}" focusing on the attribute "{attribute}" (Category: {category}). Requirements: 1. Each idea should be directly inspired by the attribute "{attribute}" 2. Think about how this attribute could be improved, reimagined, or applied in new ways 3. Ideas should be specific and actionable (15-30 words each) 4. Be creative while maintaining relevance to the attribute Return JSON only: {{"ideas": ["idea 1", "idea 2", ...]}} Generate exactly {idea_count} ideas based on the attribute "{attribute}".""" else: return f"""/no_think 為「{query}」生成 {idea_count} 個創意點子,聚焦於屬性「{attribute}」(類別:{category})。 要求: 1. 每個點子要直接受屬性「{attribute}」啟發 2. 思考如何改進、重新想像或以新方式應用這個屬性 3. 點子要具體可行(每個 15-30 字) 4. 保持創意同時與屬性相關 只回傳 JSON: {{"ideas": ["點子1", "點子2", ...]}} 基於屬性「{attribute}」生成正好 {idea_count} 個點子。""" async def generate_ideas( query: str, model: str = None, temperature: float = None, categories: List[str] = None, ideas_per_attribute: int = 1, lang: str = None ) -> Dict[str, Any]: """ Generate ideas using attribute decomposition only (C3). Args: query: The object/concept to generate ideas for model: LLM model to use temperature: Generation temperature categories: Categories to use for decomposition ideas_per_attribute: Ideas to generate per attribute lang: Language for prompts Returns: Dict with ideas and metadata """ model = model or MODEL temperature = temperature or TEMPERATURE categories = categories or FIXED_CATEGORIES lang = lang or PROMPT_LANGUAGE # Step 1: Generate attributes using existing prompt # Build category definitions for the prompt category_defs = [ {"name": cat, "description": f"Related {cat.lower()} of the object", "order": i} for i, cat in enumerate(categories) ] attr_prompt = get_step1_dynamic_attributes_prompt( query=query, categories=category_defs, lang=lang ) attr_response = await ollama_provider.generate( prompt=attr_prompt, model=model, temperature=temperature ) attributes_by_category = extract_json_from_response(attr_response) # Step 2: Generate ideas for each attribute all_ideas = [] attribute_details = [] for category in categories: attrs = attributes_by_category.get(category, []) for attr in attrs: prompt = get_attribute_idea_generation_prompt( query=query, category=category, attribute=attr, idea_count=ideas_per_attribute, lang=lang ) response = await ollama_provider.generate( prompt=prompt, model=model, temperature=temperature ) result = extract_json_from_response(response) ideas = result.get("ideas", []) # Tag ideas with attribute source for idea in ideas: all_ideas.append({ "idea": idea, "category": category, "attribute": attr }) attribute_details.append({ "category": category, "attribute": attr, "ideas_generated": len(ideas) }) return { "condition": "c3_attribute_only", "query": query, "ideas": [item["idea"] for item in all_ideas], "ideas_with_source": all_ideas, "idea_count": len(all_ideas), "metadata": { "model": model, "temperature": temperature, "prompt_language": lang, "categories": categories, "attributes_by_category": attributes_by_category, "attribute_count": sum(len(v) for v in attributes_by_category.values()), "ideas_per_attribute": ideas_per_attribute, "attributes": attribute_details, "mechanism": "attribute_decomposition_only" } } # For testing if __name__ == "__main__": import asyncio async def test(): result = await generate_ideas("Chair") print(f"Generated {result['idea_count']} ideas from {result['metadata']['attribute_count']} attributes:") for cat, attrs in result['metadata']['attributes_by_category'].items(): print(f" {cat}: {', '.join(attrs)}") print("\nSample ideas:") for i, item in enumerate(result['ideas_with_source'][:5], 1): print(f" {i}. [{item['category']}/{item['attribute']}] {item['idea']}") asyncio.run(test())