Compare commits

..

4 Commits

Author SHA1 Message Date
5571076406 feat: Add curated expert occupations with local data sources
- Add curated occupations seed files (210 entries in zh/en) with specific domains
- Add DBpedia occupations data (2164 entries) for external source option
- Refactor expert_source_service to read from local JSON files
- Improve keyword generation prompts to leverage expert domain context
- Add architecture analysis documentation (ARCHITECTURE_ANALYSIS.md)
- Fix expert source selection bug (proper handling of empty custom_experts)
- Update frontend to support curated/dbpedia/wikidata expert sources

Key changes:
- backend/app/data/: Local occupation data files
- backend/app/services/expert_source_service.py: Simplified local file reading
- backend/app/prompts/expert_transformation_prompt.py: Better domain-aware prompts
- Removed expert_cache.py (no longer needed with local files)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 16:34:35 +08:00
8777e27cbb feat: Add expert source selector UI
- Add expert source dropdown in TransformationInputPanel
  - Options: LLM 生成, Wikidata, ConceptNet
  - Shows description for each source
- Pass expertSource through App -> TransformationPanel -> hook -> API
- Default source remains 'llm'

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 14:59:27 +08:00
43785db595 feat: Add external expert sources (Wikidata SPARQL + ConceptNet API)
- Add expert_cache.py: TTL-based in-memory cache (1 hour default)
- Add expert_source_service.py: WikidataProvider and ConceptNetProvider
  - Wikidata SPARQL queries for occupations with Chinese labels
  - ConceptNet API queries for occupation-related concepts
  - Random selection from cached pool
- Update schemas.py: Add ExpertSource enum (llm/wikidata/conceptnet)
- Update ExpertTransformationRequest with expert_source and expert_language
- Update router: Conditionally use external sources with LLM fallback
  - New SSE events: expert_source, expert_fallback
- Update frontend types with ExpertSource

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 11:42:48 +08:00
baea210109 feat: Improve expert diversity and description reliability
- Add random seed and diversity hints to expert generation prompt
- Explicitly avoid common professions (醫生、工程師、教師、律師等)
- Change description generation from batch to one-by-one for reliability
- Increase default temperature from 0.7 to 0.95 for more creative output
- Add description_progress SSE event for real-time feedback

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 11:24:03 +08:00
16 changed files with 10236 additions and 77 deletions

277
ARCHITECTURE_ANALYSIS.md Normal file
View File

@@ -0,0 +1,277 @@
# novelty-seeking 系統流程與耦合度分析
> 生成日期: 2025-12-04
## 一、系統整體架構概覽
novelty-seeking 是一個創新思維引導系統,由三個核心 Agent 組成:
- **Attribute Agent**:從查詢到屬性節點的映射
- **Transformation Agent**:屬性到新關鍵字的轉換
- **Expert Transformation Agent**:多視角專家角度的屬性轉換
---
## 二、完整資料流程
```
┌─────────────────────────────────────────────────────────────────────┐
│ Attribute Agent │
├─────────────────────────────────────────────────────────────────────┤
│ 用戶輸入 Query (如「腳踏車」) │
│ ↓ │
│ Step 0: 類別分析 (category_mode 決定) │
│ → 產出: CategoryDefinition[] (如 材料/功能/用途/使用族群) │
│ ↓ │
│ Step 1: 屬性列表生成 │
│ → 產出: {材料: [鋼,木,碳纖維], 功能: [搬運,儲存], ...} │
│ ↓ │
│ Step 2: 關係生成 (DAG 邊) │
│ → 產出: AttributeDAG (nodes + edges) │
└─────────────────────────────────────────────────────────────────────┘
↓ (高耦合)
┌─────────────────────────────────────────────────────────────────────┐
│ Expert Transformation Agent │
├─────────────────────────────────────────────────────────────────────┤
│ 輸入: Query + Category + Attributes (來自 Attribute Agent) │
│ ↓ │
│ Step 0: 專家團隊生成 │
│ → expert_source 決定: llm / curated / dbpedia / wikidata │
│ → 產出: ExpertProfile[] (如 會計師/心理師/生態學家) │
│ ↓ │
│ Step 1: 專家視角關鍵字生成 (對每個 attribute) │
│ → 產出: ExpertKeyword[] (關鍵字 + 來源專家 + 來源屬性) │
│ ↓ │
│ Step 2: 描述生成 (對每個 keyword) │
│ → 產出: ExpertTransformationDescription[] │
└─────────────────────────────────────────────────────────────────────┘
```
---
## 三、Attribute Agent 詳細流程
### 3.1 流程架構
```
用戶查詢 (Query)
┌─────────────────────────────────────────────┐
│ Step 0: 類別分析 (Category Mode 決定) │
├─────────────────────────────────────────────┤
│ 輸入: query, suggested_category_count │
│ 處理: │
│ - FIXED_ONLY: 使用 4 個固定類別 │
│ - FIXED_PLUS_CUSTOM: 固定 + 用戶自訂 │
│ - FIXED_PLUS_DYNAMIC: 固定 + LLM 推薦 │
│ - CUSTOM_ONLY: 僅 LLM 推薦 │
│ - DYNAMIC_AUTO: 純 LLM 推薦 (預設) │
│ 輸出: Step0Result (recommended categories) │
└─────────────────────────────────────────────┘
┌─────────────────────────────────────────────┐
│ Step 1: 屬性列表生成 (Attributes) │
├─────────────────────────────────────────────┤
│ 輸入: query, final_categories │
│ LLM 處理: │
│ - 分析 query 在各類別下的屬性 │
│ - 每個類別生成 3-5 個屬性 │
│ 輸出: DynamicStep1Result │
└─────────────────────────────────────────────┘
┌─────────────────────────────────────────────┐
│ Step 2: 關係映射 (Relationships → DAG) │
├─────────────────────────────────────────────┤
│ 輸入: query, categories, attributes │
│ LLM 處理: │
│ - 分析相鄰類別之間的因果關係 │
│ - 生成 (source, target) 關係對 │
│ 輸出: AttributeDAG │
└─────────────────────────────────────────────┘
```
### 3.2 關鍵輸入變數
| 變數 | 來源 | 影響範圍 | 作用 |
|------|------|--------|------|
| `query` | 用戶輸入 | Step 0-2 全部 | 決定分析的物件 |
| `category_mode` | 用戶選擇 | Step 0 | 決定使用哪些類別 |
| `suggested_category_count` | 用戶設定 | Step 0 | LLM 推薦類別的數量 |
| `temperature` | 用戶設定 | Step 0-2 | 控制 LLM 輸出的多樣性 |
| `model` | 用戶選擇 | Step 0-2 | 選擇不同的 LLM 模型 |
---
## 四、Expert Transformation Agent 詳細流程
### 4.1 流程架構
```
屬性列表 (attributes from Attribute Agent)
┌─────────────────────────────────────────────┐
│ Step 0: 專家團隊生成 (Expert Generation) │
├─────────────────────────────────────────────┤
│ 決定因素: │
│ - expert_source = 'llm' → LLM 生成 │
│ - expert_source ∈ ['curated', 'dbpedia', │
│ 'wikidata'] → 本地檔案隨機選取 │
│ - 有 custom_experts → 結合 LLM │
│ │
│ 輸出: ExpertProfile[] │
│ [{id, name, domain, perspective}] │
└─────────────────────────────────────────────┘
┌─────────────────────────────────────────────┐
│ Step 1: 專家視角關鍵字生成 (Keywords) │
├─────────────────────────────────────────────┤
│ 迴圈: for each attribute in attributes: │
│ LLM 為每個專家生成 keywords_per_expert │
│ 個關鍵字 │
│ │
│ 輸出: ExpertKeyword[] │
│ [{keyword, expert_id, expert_name, │
│ source_attribute}] │
└─────────────────────────────────────────────┘
┌─────────────────────────────────────────────┐
│ Step 2: 描述生成 (Descriptions) │
├─────────────────────────────────────────────┤
│ 迴圈: for each expert_keyword: │
│ LLM 生成 15-30 字的創新應用描述 │
│ │
│ 輸出: ExpertTransformationDescription[] │
└─────────────────────────────────────────────┘
```
### 4.2 關鍵輸入變數
| 變數 | 來源 | 影響範圍 | 作用 |
|------|------|--------|------|
| `expert_source` | 用戶選擇 | Step 0 | 決定專家來源 (llm/curated/dbpedia/wikidata) |
| `expert_count` | 用戶設定 | Step 0 | 專家數量 (2-8) |
| `keywords_per_expert` | 用戶設定 | Step 1 | 每專家每屬性關鍵字數 (1-3) |
| `custom_experts` | 用戶輸入 | Step 0 | 用戶指定的專家名稱 |
| `temperature` | 用戶設定 | Step 0-2 | 控制多樣性 |
### 4.3 關鍵字生成公式
```
總關鍵字數 = len(attributes) × expert_count × keywords_per_expert
範例計算:
├─ 3 個屬性 (搬運, 儲存, 展示)
├─ 3 位專家 (會計師, 心理師, 生態學家)
├─ 1 個關鍵字/專家
└─ = 3 × 3 × 1 = 9 個關鍵字
```
---
## 五、關鍵字生成影響因素
| 階段 | 影響變數 | 影響程度 | 說明 |
|------|---------|---------|------|
| **屬性生成** | `query` | 極高 | 決定 LLM 分析的語義基礎 |
| | `category_mode` | 高 | 決定類別維度 |
| | `temperature` | 中 | 越高越多樣 |
| | `model` | 中 | 不同模型知識基礎不同 |
| **專家生成** | `expert_source` | 高 | 決定專家來源與品質 |
| | `expert_count` | 中 | 2-8 位專家 |
| | `custom_experts` | 中 | 與 LLM 結合 |
| **關鍵字生成** | `experts[].domain` | 極高 | 直接決定關鍵字視角 |
| | `keywords_per_expert` | 低 | 控制數量 |
| | `source_attribute` | 高 | 決定思考起點 |
---
## 六、耦合度分析
### 6.1 高耦合連接 ⚠️
| 連接 | 耦合度 | 原因 | 風險 |
|------|--------|------|------|
| Attribute → Expert Transform | 高 | Expert 依賴 Attribute 輸出 | 結構變更需同步修改 |
| Expert 生成 → Keyword 生成 | 高 | domain 直接影響關鍵字 | domain 品質差→關鍵字無關 |
| Prompt → LLM 輸出結構 | 高 | prompt 定義 JSON 格式 | 改 prompt 需改 schema |
### 6.2 低耦合連接 ✓
| 連接 | 耦合度 | 原因 | 優點 |
|------|--------|------|------|
| curated/dbpedia/wikidata | 低 | 獨立本地檔案 | 可單獨更新 |
| SSE 通信格式 | 低 | 標準化解耦 | 向後相容 |
| useAttribute/useExpertTransformation | 低 | 獨立 hook | 可單獨複用 |
### 6.3 耦合度矩陣
| | Attribute | Transformation | Expert Transform |
|----|-----------|---------------|----|
| **Attribute** | - | 低 | 高 |
| **Transformation** | 低 | - | 低 |
| **Expert Transform** | 高 | 低 | - |
---
## 七、專家來源比較
| 來源 | 檔案 | 筆數 | Domain 品質 | 特點 |
|------|------|------|------------|------|
| `llm` | - | 動態 | 高 | LLM 根據 query 生成相關專家 |
| `curated` | curated_occupations_zh/en.json | 210 | 高 | 精選職業,含具體領域 |
| `dbpedia` | dbpedia_occupations_en.json | 2164 | 低 | 全是 "Professional Field" |
| `wikidata` | - | - | - | 未實作本地化 |
---
## 八、決策變化追蹤範例
```
Query: "腳踏車"
Category Mode: DYNAMIC_AUTO
→ LLM 建議 [材料, 功能, 用途, 使用族群]
Expert Source: "curated"
→ 隨機選取 [外科醫師(醫療與健康), 軟體工程師(資訊科技), 主廚(餐飲與服務)]
Attribute "搬運" + Expert "外科醫師"
→ LLM 思考: 醫療視角看搬運
→ Keyword: "器官運輸", "急救物流"
Description 生成:
→ "從急救醫療角度,腳踏車可改良為緊急醫療運輸工具..."
```
---
## 九、改進建議
| 問題 | 現狀 | 建議改進 |
|------|------|---------|
| domain 品質 | DBpedia 全是通用值 | ✅ 已建立精選職業 |
| 重複計算 Expert | 每類別重新生成 | 考慮 Expert 全局化 |
| Temperature 統一 | 整流程同一值 | 可按 Step 分開設定 |
| 缺乏快取 | 每次重新分析 | 加入 Attribute 快取層 |
| 語言支援 | 主要中文 | ✅ 已建立英文版 |
---
## 十、關鍵檔案清單
### Backend
- `app/routers/analyze.py` - Attribute Agent 路由
- `app/routers/expert_transformation.py` - Expert Transformation 路由
- `app/prompts/step_prompts.py` - Attribute Agent 提示詞
- `app/prompts/expert_transformation_prompt.py` - Expert Transformation 提示詞
- `app/services/expert_source_service.py` - 專家來源服務
- `app/services/llm_service.py` - LLM 調用服務
- `app/data/curated_occupations_zh.json` - 精選職業(中文)
- `app/data/curated_occupations_en.json` - 精選職業(英文)
- `app/data/dbpedia_occupations_en.json` - DBpedia 職業
### Frontend
- `src/App.tsx` - 主狀態管理
- `src/hooks/useAttribute.ts` - Attribute Agent Hook
- `src/hooks/useExpertTransformation.ts` - Expert Transformation Hook
- `src/components/TransformationInputPanel.tsx` - 轉換控制面板
- `src/types/index.ts` - 類型定義

View File

@@ -0,0 +1,9 @@
{
"metadata": {
"source": "conceptnet",
"language": "en",
"fetched_at": "2025-12-04T07:26:30.695936+00:00",
"total_count": 0
},
"occupations": []
}

View File

@@ -0,0 +1,9 @@
{
"metadata": {
"source": "conceptnet",
"language": "zh",
"fetched_at": "2025-12-04T07:26:26.994914+00:00",
"total_count": 0
},
"occupations": []
}

View File

@@ -0,0 +1,216 @@
{
"metadata": {
"source": "curated",
"language": "en",
"created_at": "2025-12-04",
"total_count": 210,
"description": "Curated common professional occupations with specific domains"
},
"occupations": [
{"name": "Surgeon", "domain": "Healthcare"},
{"name": "Internist", "domain": "Healthcare"},
{"name": "Dentist", "domain": "Healthcare"},
{"name": "Ophthalmologist", "domain": "Healthcare"},
{"name": "Psychiatrist", "domain": "Healthcare"},
{"name": "Pediatrician", "domain": "Healthcare"},
{"name": "Nurse", "domain": "Healthcare"},
{"name": "Pharmacist", "domain": "Healthcare"},
{"name": "Clinical Psychologist", "domain": "Healthcare"},
{"name": "Physical Therapist", "domain": "Healthcare"},
{"name": "Occupational Therapist", "domain": "Healthcare"},
{"name": "Nutritionist", "domain": "Healthcare"},
{"name": "Traditional Chinese Medicine Doctor", "domain": "Healthcare"},
{"name": "Veterinarian", "domain": "Healthcare"},
{"name": "Software Engineer", "domain": "Information Technology"},
{"name": "Frontend Developer", "domain": "Information Technology"},
{"name": "Backend Developer", "domain": "Information Technology"},
{"name": "Data Scientist", "domain": "Information Technology"},
{"name": "Data Engineer", "domain": "Information Technology"},
{"name": "Machine Learning Engineer", "domain": "Information Technology"},
{"name": "Cybersecurity Engineer", "domain": "Information Technology"},
{"name": "DevOps Engineer", "domain": "Information Technology"},
{"name": "UI Designer", "domain": "Information Technology"},
{"name": "UX Designer", "domain": "Information Technology"},
{"name": "Product Manager", "domain": "Information Technology"},
{"name": "Systems Analyst", "domain": "Information Technology"},
{"name": "Network Engineer", "domain": "Information Technology"},
{"name": "Cloud Architect", "domain": "Information Technology"},
{"name": "Accountant", "domain": "Finance & Business"},
{"name": "Financial Analyst", "domain": "Finance & Business"},
{"name": "Investment Manager", "domain": "Finance & Business"},
{"name": "Risk Manager", "domain": "Finance & Business"},
{"name": "Actuary", "domain": "Finance & Business"},
{"name": "Bank Manager", "domain": "Finance & Business"},
{"name": "Securities Analyst", "domain": "Finance & Business"},
{"name": "Tax Consultant", "domain": "Finance & Business"},
{"name": "Business Consultant", "domain": "Finance & Business"},
{"name": "HR Manager", "domain": "Finance & Business"},
{"name": "Marketing Manager", "domain": "Finance & Business"},
{"name": "Sales Manager", "domain": "Finance & Business"},
{"name": "Procurement Manager", "domain": "Finance & Business"},
{"name": "Entrepreneur", "domain": "Finance & Business"},
{"name": "Lawyer", "domain": "Law & Policy"},
{"name": "Judge", "domain": "Law & Policy"},
{"name": "Prosecutor", "domain": "Law & Policy"},
{"name": "Notary", "domain": "Law & Policy"},
{"name": "Legal Counsel", "domain": "Law & Policy"},
{"name": "IP Attorney", "domain": "Law & Policy"},
{"name": "Policy Analyst", "domain": "Law & Policy"},
{"name": "Diplomat", "domain": "Law & Policy"},
{"name": "Civil Servant", "domain": "Law & Policy"},
{"name": "Legislator", "domain": "Law & Policy"},
{"name": "Mediator", "domain": "Law & Policy"},
{"name": "Legal Scholar", "domain": "Law & Policy"},
{"name": "University Professor", "domain": "Education & Academia"},
{"name": "High School Teacher", "domain": "Education & Academia"},
{"name": "Middle School Teacher", "domain": "Education & Academia"},
{"name": "Elementary School Teacher", "domain": "Education & Academia"},
{"name": "Preschool Teacher", "domain": "Education & Academia"},
{"name": "Special Education Teacher", "domain": "Education & Academia"},
{"name": "Tutor", "domain": "Education & Academia"},
{"name": "Researcher", "domain": "Education & Academia"},
{"name": "Librarian", "domain": "Education & Academia"},
{"name": "Education Administrator", "domain": "Education & Academia"},
{"name": "Academic Editor", "domain": "Education & Academia"},
{"name": "Education Consultant", "domain": "Education & Academia"},
{"name": "Speech Therapist", "domain": "Education & Academia"},
{"name": "Painter", "domain": "Arts & Creativity"},
{"name": "Sculptor", "domain": "Arts & Creativity"},
{"name": "Musician", "domain": "Arts & Creativity"},
{"name": "Composer", "domain": "Arts & Creativity"},
{"name": "Conductor", "domain": "Arts & Creativity"},
{"name": "Dancer", "domain": "Arts & Creativity"},
{"name": "Actor", "domain": "Arts & Creativity"},
{"name": "Film Director", "domain": "Arts & Creativity"},
{"name": "Screenwriter", "domain": "Arts & Creativity"},
{"name": "Photographer", "domain": "Arts & Creativity"},
{"name": "Illustrator", "domain": "Arts & Creativity"},
{"name": "Animator", "domain": "Arts & Creativity"},
{"name": "Graphic Designer", "domain": "Arts & Creativity"},
{"name": "Fashion Designer", "domain": "Arts & Creativity"},
{"name": "Jewelry Designer", "domain": "Arts & Creativity"},
{"name": "Mechanical Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Electrical Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Electronics Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Chemical Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Materials Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Industrial Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Automation Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Quality Control Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Process Engineer", "domain": "Engineering & Manufacturing"},
{"name": "R&D Engineer", "domain": "Engineering & Manufacturing"},
{"name": "Production Manager", "domain": "Engineering & Manufacturing"},
{"name": "Factory Manager", "domain": "Engineering & Manufacturing"},
{"name": "Technician", "domain": "Engineering & Manufacturing"},
{"name": "Architect", "domain": "Architecture & Space"},
{"name": "Interior Designer", "domain": "Architecture & Space"},
{"name": "Landscape Designer", "domain": "Architecture & Space"},
{"name": "Urban Planner", "domain": "Architecture & Space"},
{"name": "Structural Engineer", "domain": "Architecture & Space"},
{"name": "Civil Engineer", "domain": "Architecture & Space"},
{"name": "Construction Engineer", "domain": "Architecture & Space"},
{"name": "Site Supervisor", "domain": "Architecture & Space"},
{"name": "Surveyor", "domain": "Architecture & Space"},
{"name": "Architectural Drafter", "domain": "Architecture & Space"},
{"name": "Exhibition Designer", "domain": "Architecture & Space"},
{"name": "Lighting Designer", "domain": "Architecture & Space"},
{"name": "Journalist", "domain": "Media & Communications"},
{"name": "News Anchor", "domain": "Media & Communications"},
{"name": "Editor", "domain": "Media & Communications"},
{"name": "Copy Editor", "domain": "Media & Communications"},
{"name": "Video Editor", "domain": "Media & Communications"},
{"name": "PR Specialist", "domain": "Media & Communications"},
{"name": "Advertising Planner", "domain": "Media & Communications"},
{"name": "Social Media Manager", "domain": "Media & Communications"},
{"name": "Content Creator", "domain": "Media & Communications"},
{"name": "Podcast Host", "domain": "Media & Communications"},
{"name": "Publisher", "domain": "Media & Communications"},
{"name": "Translator", "domain": "Media & Communications"},
{"name": "Interpreter", "domain": "Media & Communications"},
{"name": "Agronomist", "domain": "Agriculture & Environment"},
{"name": "Horticulturist", "domain": "Agriculture & Environment"},
{"name": "Livestock Specialist", "domain": "Agriculture & Environment"},
{"name": "Aquaculture Specialist", "domain": "Agriculture & Environment"},
{"name": "Environmental Engineer", "domain": "Agriculture & Environment"},
{"name": "Ecologist", "domain": "Agriculture & Environment"},
{"name": "Forest Ranger", "domain": "Agriculture & Environment"},
{"name": "Meteorologist", "domain": "Agriculture & Environment"},
{"name": "Geologist", "domain": "Agriculture & Environment"},
{"name": "Environmental Inspector", "domain": "Agriculture & Environment"},
{"name": "Sustainability Consultant", "domain": "Agriculture & Environment"},
{"name": "Organic Farmer", "domain": "Agriculture & Environment"},
{"name": "Executive Chef", "domain": "Hospitality & Service"},
{"name": "Pastry Chef", "domain": "Hospitality & Service"},
{"name": "Bartender", "domain": "Hospitality & Service"},
{"name": "Sommelier", "domain": "Hospitality & Service"},
{"name": "Restaurant Manager", "domain": "Hospitality & Service"},
{"name": "Hotel Manager", "domain": "Hospitality & Service"},
{"name": "Travel Planner", "domain": "Hospitality & Service"},
{"name": "Tour Guide", "domain": "Hospitality & Service"},
{"name": "Barista", "domain": "Hospitality & Service"},
{"name": "Food Critic", "domain": "Hospitality & Service"},
{"name": "Wedding Planner", "domain": "Hospitality & Service"},
{"name": "Event Planner", "domain": "Hospitality & Service"},
{"name": "Sports Coach", "domain": "Sports & Fitness"},
{"name": "Personal Trainer", "domain": "Sports & Fitness"},
{"name": "Yoga Instructor", "domain": "Sports & Fitness"},
{"name": "Athletic Trainer", "domain": "Sports & Fitness"},
{"name": "Physical Education Teacher", "domain": "Sports & Fitness"},
{"name": "Sports Psychologist", "domain": "Sports & Fitness"},
{"name": "Sports Nutritionist", "domain": "Sports & Fitness"},
{"name": "Professional Athlete", "domain": "Sports & Fitness"},
{"name": "Referee", "domain": "Sports & Fitness"},
{"name": "Strength Coach", "domain": "Sports & Fitness"},
{"name": "Sports Agent", "domain": "Sports & Fitness"},
{"name": "Social Worker", "domain": "Social Services"},
{"name": "Counselor", "domain": "Social Services"},
{"name": "Guidance Counselor", "domain": "Social Services"},
{"name": "Volunteer Coordinator", "domain": "Social Services"},
{"name": "Nonprofit Manager", "domain": "Social Services"},
{"name": "Community Organizer", "domain": "Social Services"},
{"name": "Elderly Care Worker", "domain": "Social Services"},
{"name": "Youth Counselor", "domain": "Social Services"},
{"name": "Family Therapist", "domain": "Social Services"},
{"name": "Career Counselor", "domain": "Social Services"},
{"name": "Addiction Counselor", "domain": "Social Services"},
{"name": "Pilot", "domain": "Transportation & Logistics"},
{"name": "Ship Captain", "domain": "Transportation & Logistics"},
{"name": "Train Operator", "domain": "Transportation & Logistics"},
{"name": "Air Traffic Controller", "domain": "Transportation & Logistics"},
{"name": "Logistics Manager", "domain": "Transportation & Logistics"},
{"name": "Supply Chain Manager", "domain": "Transportation & Logistics"},
{"name": "Warehouse Manager", "domain": "Transportation & Logistics"},
{"name": "Customs Broker", "domain": "Transportation & Logistics"},
{"name": "Traffic Engineer", "domain": "Transportation & Logistics"},
{"name": "Port Authority Officer", "domain": "Transportation & Logistics"},
{"name": "Physicist", "domain": "Scientific Research"},
{"name": "Chemist", "domain": "Scientific Research"},
{"name": "Biologist", "domain": "Scientific Research"},
{"name": "Astronomer", "domain": "Scientific Research"},
{"name": "Mathematician", "domain": "Scientific Research"},
{"name": "Statistician", "domain": "Scientific Research"},
{"name": "Geneticist", "domain": "Scientific Research"},
{"name": "Neuroscientist", "domain": "Scientific Research"},
{"name": "Oceanographer", "domain": "Scientific Research"},
{"name": "Archaeologist", "domain": "Scientific Research"},
{"name": "Anthropologist", "domain": "Scientific Research"},
{"name": "Sociologist", "domain": "Scientific Research"},
{"name": "Economist", "domain": "Scientific Research"},
{"name": "Historian", "domain": "Scientific Research"},
{"name": "Philosopher", "domain": "Scientific Research"}
]
}

View File

@@ -0,0 +1,216 @@
{
"metadata": {
"source": "curated",
"language": "zh",
"created_at": "2025-12-04",
"total_count": 210,
"description": "精選常見專家職業,含具體專業領域"
},
"occupations": [
{"name": "外科醫師", "domain": "醫療與健康"},
{"name": "內科醫師", "domain": "醫療與健康"},
{"name": "牙醫師", "domain": "醫療與健康"},
{"name": "眼科醫師", "domain": "醫療與健康"},
{"name": "精神科醫師", "domain": "醫療與健康"},
{"name": "小兒科醫師", "domain": "醫療與健康"},
{"name": "護理師", "domain": "醫療與健康"},
{"name": "藥師", "domain": "醫療與健康"},
{"name": "臨床心理師", "domain": "醫療與健康"},
{"name": "物理治療師", "domain": "醫療與健康"},
{"name": "職能治療師", "domain": "醫療與健康"},
{"name": "營養師", "domain": "醫療與健康"},
{"name": "中醫師", "domain": "醫療與健康"},
{"name": "獸醫師", "domain": "醫療與健康"},
{"name": "軟體工程師", "domain": "資訊科技"},
{"name": "前端工程師", "domain": "資訊科技"},
{"name": "後端工程師", "domain": "資訊科技"},
{"name": "資料科學家", "domain": "資訊科技"},
{"name": "資料工程師", "domain": "資訊科技"},
{"name": "機器學習工程師", "domain": "資訊科技"},
{"name": "資安工程師", "domain": "資訊科技"},
{"name": "DevOps工程師", "domain": "資訊科技"},
{"name": "UI設計師", "domain": "資訊科技"},
{"name": "UX設計師", "domain": "資訊科技"},
{"name": "產品經理", "domain": "資訊科技"},
{"name": "系統分析師", "domain": "資訊科技"},
{"name": "網路工程師", "domain": "資訊科技"},
{"name": "雲端架構師", "domain": "資訊科技"},
{"name": "會計師", "domain": "金融與商業"},
{"name": "財務分析師", "domain": "金融與商業"},
{"name": "投資經理", "domain": "金融與商業"},
{"name": "風險管理師", "domain": "金融與商業"},
{"name": "精算師", "domain": "金融與商業"},
{"name": "銀行經理", "domain": "金融與商業"},
{"name": "證券分析師", "domain": "金融與商業"},
{"name": "稅務顧問", "domain": "金融與商業"},
{"name": "企業顧問", "domain": "金融與商業"},
{"name": "人資經理", "domain": "金融與商業"},
{"name": "行銷經理", "domain": "金融與商業"},
{"name": "業務經理", "domain": "金融與商業"},
{"name": "採購經理", "domain": "金融與商業"},
{"name": "創業家", "domain": "金融與商業"},
{"name": "律師", "domain": "法律與政策"},
{"name": "法官", "domain": "法律與政策"},
{"name": "檢察官", "domain": "法律與政策"},
{"name": "公證人", "domain": "法律與政策"},
{"name": "法務專員", "domain": "法律與政策"},
{"name": "智財律師", "domain": "法律與政策"},
{"name": "政策分析師", "domain": "法律與政策"},
{"name": "外交官", "domain": "法律與政策"},
{"name": "公務員", "domain": "法律與政策"},
{"name": "立法委員", "domain": "法律與政策"},
{"name": "調解員", "domain": "法律與政策"},
{"name": "法律學者", "domain": "法律與政策"},
{"name": "大學教授", "domain": "教育與學術"},
{"name": "高中教師", "domain": "教育與學術"},
{"name": "國中教師", "domain": "教育與學術"},
{"name": "小學教師", "domain": "教育與學術"},
{"name": "幼教老師", "domain": "教育與學術"},
{"name": "特教老師", "domain": "教育與學術"},
{"name": "補習班老師", "domain": "教育與學術"},
{"name": "研究員", "domain": "教育與學術"},
{"name": "圖書館員", "domain": "教育與學術"},
{"name": "教育行政人員", "domain": "教育與學術"},
{"name": "學術編輯", "domain": "教育與學術"},
{"name": "教育顧問", "domain": "教育與學術"},
{"name": "語言治療師", "domain": "教育與學術"},
{"name": "畫家", "domain": "藝術與創意"},
{"name": "雕塑家", "domain": "藝術與創意"},
{"name": "音樂家", "domain": "藝術與創意"},
{"name": "作曲家", "domain": "藝術與創意"},
{"name": "指揮家", "domain": "藝術與創意"},
{"name": "舞蹈家", "domain": "藝術與創意"},
{"name": "演員", "domain": "藝術與創意"},
{"name": "導演", "domain": "藝術與創意"},
{"name": "編劇", "domain": "藝術與創意"},
{"name": "攝影師", "domain": "藝術與創意"},
{"name": "插畫家", "domain": "藝術與創意"},
{"name": "動畫師", "domain": "藝術與創意"},
{"name": "平面設計師", "domain": "藝術與創意"},
{"name": "時尚設計師", "domain": "藝術與創意"},
{"name": "珠寶設計師", "domain": "藝術與創意"},
{"name": "機械工程師", "domain": "工程與製造"},
{"name": "電機工程師", "domain": "工程與製造"},
{"name": "電子工程師", "domain": "工程與製造"},
{"name": "化學工程師", "domain": "工程與製造"},
{"name": "材料工程師", "domain": "工程與製造"},
{"name": "工業工程師", "domain": "工程與製造"},
{"name": "自動化工程師", "domain": "工程與製造"},
{"name": "品管工程師", "domain": "工程與製造"},
{"name": "製程工程師", "domain": "工程與製造"},
{"name": "研發工程師", "domain": "工程與製造"},
{"name": "生產經理", "domain": "工程與製造"},
{"name": "工廠廠長", "domain": "工程與製造"},
{"name": "技師", "domain": "工程與製造"},
{"name": "建築師", "domain": "建築與空間"},
{"name": "室內設計師", "domain": "建築與空間"},
{"name": "景觀設計師", "domain": "建築與空間"},
{"name": "都市規劃師", "domain": "建築與空間"},
{"name": "結構工程師", "domain": "建築與空間"},
{"name": "土木工程師", "domain": "建築與空間"},
{"name": "營造工程師", "domain": "建築與空間"},
{"name": "工地主任", "domain": "建築與空間"},
{"name": "測量師", "domain": "建築與空間"},
{"name": "建築繪圖員", "domain": "建築與空間"},
{"name": "展場設計師", "domain": "建築與空間"},
{"name": "燈光設計師", "domain": "建築與空間"},
{"name": "記者", "domain": "媒體與傳播"},
{"name": "主播", "domain": "媒體與傳播"},
{"name": "編輯", "domain": "媒體與傳播"},
{"name": "文字編輯", "domain": "媒體與傳播"},
{"name": "影片剪輯師", "domain": "媒體與傳播"},
{"name": "公關專員", "domain": "媒體與傳播"},
{"name": "廣告企劃", "domain": "媒體與傳播"},
{"name": "社群經理", "domain": "媒體與傳播"},
{"name": "內容創作者", "domain": "媒體與傳播"},
{"name": "播客主持人", "domain": "媒體與傳播"},
{"name": "出版人", "domain": "媒體與傳播"},
{"name": "翻譯師", "domain": "媒體與傳播"},
{"name": "口譯員", "domain": "媒體與傳播"},
{"name": "農藝師", "domain": "農業與環境"},
{"name": "園藝師", "domain": "農業與環境"},
{"name": "畜牧專家", "domain": "農業與環境"},
{"name": "水產養殖師", "domain": "農業與環境"},
{"name": "環境工程師", "domain": "農業與環境"},
{"name": "生態學家", "domain": "農業與環境"},
{"name": "森林保育員", "domain": "農業與環境"},
{"name": "氣象學家", "domain": "農業與環境"},
{"name": "地質學家", "domain": "農業與環境"},
{"name": "環保稽查員", "domain": "農業與環境"},
{"name": "永續發展顧問", "domain": "農業與環境"},
{"name": "有機農場主", "domain": "農業與環境"},
{"name": "主廚", "domain": "餐飲與服務"},
{"name": "西點師傅", "domain": "餐飲與服務"},
{"name": "調酒師", "domain": "餐飲與服務"},
{"name": "侍酒師", "domain": "餐飲與服務"},
{"name": "餐廳經理", "domain": "餐飲與服務"},
{"name": "飯店經理", "domain": "餐飲與服務"},
{"name": "旅遊規劃師", "domain": "餐飲與服務"},
{"name": "導遊", "domain": "餐飲與服務"},
{"name": "咖啡師", "domain": "餐飲與服務"},
{"name": "美食評論家", "domain": "餐飲與服務"},
{"name": "婚禮策劃師", "domain": "餐飲與服務"},
{"name": "活動企劃", "domain": "餐飲與服務"},
{"name": "運動教練", "domain": "運動與健身"},
{"name": "健身教練", "domain": "運動與健身"},
{"name": "瑜珈老師", "domain": "運動與健身"},
{"name": "運動防護員", "domain": "運動與健身"},
{"name": "體育老師", "domain": "運動與健身"},
{"name": "運動心理師", "domain": "運動與健身"},
{"name": "運動營養師", "domain": "運動與健身"},
{"name": "職業運動員", "domain": "運動與健身"},
{"name": "裁判", "domain": "運動與健身"},
{"name": "體能訓練師", "domain": "運動與健身"},
{"name": "運動經紀人", "domain": "運動與健身"},
{"name": "社工師", "domain": "社會服務"},
{"name": "心理諮商師", "domain": "社會服務"},
{"name": "輔導員", "domain": "社會服務"},
{"name": "志工協調員", "domain": "社會服務"},
{"name": "非營利組織經理", "domain": "社會服務"},
{"name": "社區營造員", "domain": "社會服務"},
{"name": "長照服務員", "domain": "社會服務"},
{"name": "青少年輔導員", "domain": "社會服務"},
{"name": "家庭治療師", "domain": "社會服務"},
{"name": "職涯諮詢師", "domain": "社會服務"},
{"name": "戒癮輔導員", "domain": "社會服務"},
{"name": "飛行員", "domain": "交通與物流"},
{"name": "船長", "domain": "交通與物流"},
{"name": "火車駕駛", "domain": "交通與物流"},
{"name": "航空管制員", "domain": "交通與物流"},
{"name": "物流經理", "domain": "交通與物流"},
{"name": "供應鏈經理", "domain": "交通與物流"},
{"name": "倉儲經理", "domain": "交通與物流"},
{"name": "報關員", "domain": "交通與物流"},
{"name": "交通工程師", "domain": "交通與物流"},
{"name": "港務人員", "domain": "交通與物流"},
{"name": "物理學家", "domain": "科學研究"},
{"name": "化學家", "domain": "科學研究"},
{"name": "生物學家", "domain": "科學研究"},
{"name": "天文學家", "domain": "科學研究"},
{"name": "數學家", "domain": "科學研究"},
{"name": "統計學家", "domain": "科學研究"},
{"name": "基因學家", "domain": "科學研究"},
{"name": "神經科學家", "domain": "科學研究"},
{"name": "海洋學家", "domain": "科學研究"},
{"name": "考古學家", "domain": "科學研究"},
{"name": "人類學家", "domain": "科學研究"},
{"name": "社會學家", "domain": "科學研究"},
{"name": "經濟學家", "domain": "科學研究"},
{"name": "歷史學家", "domain": "科學研究"},
{"name": "哲學家", "domain": "科學研究"}
]
}

File diff suppressed because it is too large Load Diff

View File

@@ -206,6 +206,14 @@ class ExpertTransformationDAGResult(BaseModel):
results: List[ExpertTransformationCategoryResult] results: List[ExpertTransformationCategoryResult]
class ExpertSource(str, Enum):
"""專家來源類型"""
LLM = "llm"
CURATED = "curated" # 精選職業210筆含具體領域
DBPEDIA = "dbpedia"
WIKIDATA = "wikidata"
class ExpertTransformationRequest(BaseModel): class ExpertTransformationRequest(BaseModel):
"""Expert Transformation Agent 請求""" """Expert Transformation Agent 請求"""
query: str query: str
@@ -217,6 +225,10 @@ class ExpertTransformationRequest(BaseModel):
keywords_per_expert: int = 1 # 每個專家為每個屬性生成幾個關鍵字 (1-3) keywords_per_expert: int = 1 # 每個專家為每個屬性生成幾個關鍵字 (1-3)
custom_experts: Optional[List[str]] = None # 用戶指定專家 ["藥師", "工程師"] custom_experts: Optional[List[str]] = None # 用戶指定專家 ["藥師", "工程師"]
# Expert source parameters
expert_source: ExpertSource = ExpertSource.LLM # 專家來源
expert_language: str = "en" # 外部來源的語言 (目前只有英文資料)
# LLM parameters # LLM parameters
model: Optional[str] = None model: Optional[str] = None
temperature: Optional[float] = 0.7 temperature: Optional[float] = 0.7

View File

@@ -10,20 +10,40 @@ def get_expert_generation_prompt(
custom_experts: Optional[List[str]] = None custom_experts: Optional[List[str]] = None
) -> str: ) -> str:
"""Step 0: 生成專家團隊(不依賴主題,純隨機多元)""" """Step 0: 生成專家團隊(不依賴主題,純隨機多元)"""
import time
import random
custom_text = "" custom_text = ""
if custom_experts and len(custom_experts) > 0: if custom_experts and len(custom_experts) > 0:
custom_text = f"(已指定:{', '.join(custom_experts[:expert_count])}" custom_text = f"(已指定:{', '.join(custom_experts[:expert_count])}"
# 加入時間戳和隨機數來增加多樣性
seed = int(time.time() * 1000) % 10000
diversity_hints = [
"冷門、非主流、跨領域",
"罕見職業、新興領域、邊緣學科",
"非傳統、創新、小眾專業",
"未來趨向、實驗性、非常規",
"跨文化、混合領域、獨特視角"
]
hint = random.choice(diversity_hints)
return f"""/no_think return f"""/no_think
隨機組建 {expert_count} 個來自完全不同領域的專家團隊{custom_text} 隨機組建 {expert_count} 個來自完全不同領域的專家團隊{custom_text}
【創新要求】(隨機種子:{seed}
- 優先選擇{hint}的專家
- 避免常見職業(如醫生、工程師、教師、律師等)
- 每個專家必須來自完全不相關的領域
- 越罕見、越創新越好
回傳 JSON 回傳 JSON
{{"experts": [{{"id": "expert-0", "name": "職業", "domain": "領域", "perspective": "角度"}}, ...]}} {{"experts": [{{"id": "expert-0", "name": "職業", "domain": "領域", "perspective": "角度"}}, ...]}}
規則: 規則:
- id 為 expert-0 到 expert-{expert_count - 1} - id 為 expert-0 到 expert-{expert_count - 1}
- name 填寫職業名稱非人名2-5字 - name 填寫職業名稱非人名2-5字
- 各專家的 domain 必須來自截然不同的領域,越多元越好""" - domain 要具體且獨特,不可重複類型"""
def get_expert_keyword_generation_prompt( def get_expert_keyword_generation_prompt(
@@ -33,46 +53,53 @@ def get_expert_keyword_generation_prompt(
keywords_per_expert: int = 1 keywords_per_expert: int = 1
) -> str: ) -> str:
"""Step 1: 專家視角關鍵字生成""" """Step 1: 專家視角關鍵字生成"""
experts_info = ", ".join([f"{exp['id']}:{exp['name']}({exp['domain']})" for exp in experts]) # 建立專家列表,格式更清晰
experts_list = "\n".join([f"- {exp['id']}: {exp['name']}" for exp in experts])
return f"""/no_think return f"""/no_think
專家團隊:{experts_info} 你需要扮演以下專家,為屬性生成創新關鍵字:
屬性:「{attribute}」({category}
每位專家從自己的專業視角為此屬性生成 {keywords_per_expert} 個創新關鍵字2-6字 【專家名單】
關鍵字要反映該專家領域的獨特思考方式。 {experts_list}
【任務】
屬性:「{attribute}」(類別:{category}
請為每位專家:
1. 先理解該職業的專業背景、知識領域、工作內容
2. 從該職業的獨特視角思考「{attribute}
3. 生成 {keywords_per_expert} 個與該專業相關的創新關鍵字2-6字
關鍵字必須反映該專家的專業思維方式,例如:
- 會計師 看「移動」→「資金流動」「成本效益」
- 建築師 看「移動」→「動線設計」「空間流動」
- 心理師 看「移動」→「行為動機」「情緒轉變」
回傳 JSON 回傳 JSON
{{"keywords": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱"}}, ...]}} {{"keywords": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱"}}, ...]}}
共需 {len(experts) * keywords_per_expert} 個關鍵字。""" 共需 {len(experts) * keywords_per_expert} 個關鍵字,每個關鍵字必須明顯與對應專家的專業領域相關"""
def get_expert_batch_description_prompt( def get_single_description_prompt(
query: str, query: str,
category: str, keyword: str,
expert_keywords: List[dict] # List[ExpertKeyword] expert_id: str,
expert_name: str,
expert_domain: str
) -> str: ) -> str:
"""Step 2: 批次生成專家關鍵字描述""" """Step 2: 為單一關鍵字生成描述"""
keywords_info = ", ".join([ # 如果 domain 是通用的,就只用職業名稱
f"{kw['expert_name']}:{kw['keyword']}" domain_text = f"{expert_domain}" if expert_domain and expert_domain != "Professional Field" else ""
for kw in expert_keywords
])
# 建立 keyword -> (expert_id, expert_name) 的對照
keyword_expert_map = ", ".join([
f"{kw['keyword']}{kw['expert_id']}/{kw['expert_name']}"
for kw in expert_keywords
])
return f"""/no_think return f"""/no_think
物件:「{query} 物件:「{query}
關鍵字(專家:詞彙):{keywords_info} 專家:{expert_name}{domain_text}
對照{keyword_expert_map} 關鍵字{keyword}
為每個關鍵字生成創新描述15-30字說明如何將該概念應用到「{query}」上。 你是一位{expert_name}。從你的專業視角生成一段創新應用描述15-30字說明如何將「{keyword}」的概念應用到「{query}」上。
描述要體現{expert_name}的專業思維和獨特觀點。
回傳 JSON 回傳 JSON
{{"descriptions": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱", "description": "應用描述"}}, ...]}} {{"description": "應用描述"}}"""
共需 {len(expert_keywords)} 個描述。"""

View File

@@ -13,13 +13,15 @@ from ..models.schemas import (
ExpertKeyword, ExpertKeyword,
ExpertTransformationCategoryResult, ExpertTransformationCategoryResult,
ExpertTransformationDescription, ExpertTransformationDescription,
ExpertSource,
) )
from ..prompts.expert_transformation_prompt import ( from ..prompts.expert_transformation_prompt import (
get_expert_generation_prompt, get_expert_generation_prompt,
get_expert_keyword_generation_prompt, get_expert_keyword_generation_prompt,
get_expert_batch_description_prompt, get_single_description_prompt,
) )
from ..services.llm_service import ollama_provider, extract_json_from_response from ..services.llm_service import ollama_provider, extract_json_from_response
from ..services.expert_source_service import expert_source_service
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
router = APIRouter(prefix="/api/expert-transformation", tags=["expert-transformation"]) router = APIRouter(prefix="/api/expert-transformation", tags=["expert-transformation"])
@@ -35,16 +37,38 @@ async def generate_expert_transformation_events(
model = request.model model = request.model
# ========== Step 0: Generate expert team ========== # ========== Step 0: Generate expert team ==========
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...'}, ensure_ascii=False)}\n\n" logger.info(f"[DEBUG] expert_source from request: {request.expert_source}")
logger.info(f"[DEBUG] expert_source value: {request.expert_source.value}")
logger.info(f"[DEBUG] custom_experts: {request.custom_experts}")
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...', 'source': request.expert_source.value}, ensure_ascii=False)}\n\n"
experts: List[ExpertProfile] = [] experts: List[ExpertProfile] = []
actual_source = request.expert_source.value
# 過濾出實際有內容的自訂專家(排除空字串)
actual_custom_experts = [
e.strip() for e in (request.custom_experts or [])
if e and e.strip()
]
logger.info(f"[DEBUG] actual_custom_experts (filtered): {actual_custom_experts}")
# 決定使用哪種來源生成專家
# 只有在明確選擇 LLM 或有實際自訂專家時才使用 LLM
use_llm = (
request.expert_source == ExpertSource.LLM or
len(actual_custom_experts) > 0 # 有實際自訂專家時,使用 LLM 補充
)
logger.info(f"[DEBUG] use_llm decision: {use_llm}")
if use_llm:
# LLM 生成專家
try: try:
expert_prompt = get_expert_generation_prompt( expert_prompt = get_expert_generation_prompt(
query=request.query, query=request.query,
categories=all_categories, categories=all_categories,
expert_count=request.expert_count, expert_count=request.expert_count,
custom_experts=request.custom_experts custom_experts=actual_custom_experts if actual_custom_experts else None
) )
logger.info(f"Expert prompt: {expert_prompt[:200]}") logger.info(f"Expert prompt: {expert_prompt[:200]}")
@@ -60,11 +84,64 @@ async def generate_expert_transformation_events(
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]): if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
experts.append(ExpertProfile(**exp)) experts.append(ExpertProfile(**exp))
actual_source = "llm"
except Exception as e: except Exception as e:
logger.error(f"Failed to generate experts: {e}") logger.error(f"Failed to generate experts via LLM: {e}")
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n" yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n"
return return
else:
# 外部來源生成專家 (本地檔案,同步)
try:
experts_data, actual_source = expert_source_service.get_experts(
source=request.expert_source.value,
count=request.expert_count,
language=request.expert_language
)
for i, exp_data in enumerate(experts_data):
experts.append(ExpertProfile(
id=f"expert-{i}",
name=exp_data["name"],
domain=exp_data["domain"],
perspective=f"{exp_data['domain']}角度思考"
))
logger.info(f"Generated {len(experts)} experts from {actual_source}")
except Exception as e:
# 外部來源失敗fallback 到 LLM
logger.warning(f"External source failed: {e}, falling back to LLM")
yield f"event: expert_fallback\ndata: {json.dumps({'original': request.expert_source.value, 'fallback': 'llm', 'reason': str(e)}, ensure_ascii=False)}\n\n"
try:
expert_prompt = get_expert_generation_prompt(
query=request.query,
categories=all_categories,
expert_count=request.expert_count,
custom_experts=actual_custom_experts if actual_custom_experts else None
)
expert_response = await ollama_provider.generate(
expert_prompt, model=model, temperature=temperature
)
expert_data = extract_json_from_response(expert_response)
experts_raw = expert_data.get("experts", [])
for exp in experts_raw:
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
experts.append(ExpertProfile(**exp))
actual_source = "llm"
except Exception as llm_error:
logger.error(f"LLM fallback also failed: {llm_error}")
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(llm_error)}'}, ensure_ascii=False)}\n\n"
return
# 回報來源資訊
yield f"event: expert_source\ndata: {json.dumps({'source': actual_source}, ensure_ascii=False)}\n\n"
yield f"event: expert_complete\ndata: {json.dumps({'experts': [e.model_dump() for e in experts]}, ensure_ascii=False)}\n\n" yield f"event: expert_complete\ndata: {json.dumps({'experts': [e.model_dump() for e in experts]}, ensure_ascii=False)}\n\n"
if not experts: if not experts:
@@ -119,34 +196,48 @@ async def generate_expert_transformation_events(
yield f"event: error\ndata: {json.dumps({'error': '無法生成關鍵字'}, ensure_ascii=False)}\n\n" yield f"event: error\ndata: {json.dumps({'error': '無法生成關鍵字'}, ensure_ascii=False)}\n\n"
return return
# ========== Step 2: Generate descriptions for each expert keyword ========== # ========== Step 2: Generate descriptions one by one ==========
yield f"event: description_start\ndata: {json.dumps({'message': '為專家關鍵字生成創新應用描述...'}, ensure_ascii=False)}\n\n" yield f"event: description_start\ndata: {json.dumps({'message': '為專家關鍵字生成創新應用描述...', 'total': len(all_expert_keywords)}, ensure_ascii=False)}\n\n"
descriptions: List[ExpertTransformationDescription] = [] descriptions: List[ExpertTransformationDescription] = []
# Build expert lookup for domain info
expert_lookup = {exp.id: exp for exp in experts}
for idx, kw in enumerate(all_expert_keywords):
try: try:
desc_prompt = get_expert_batch_description_prompt( expert = expert_lookup.get(kw.expert_id)
expert_domain = expert.domain if expert else ""
desc_prompt = get_single_description_prompt(
query=request.query, query=request.query,
category=request.category, keyword=kw.keyword,
expert_keywords=[kw.model_dump() for kw in all_expert_keywords] expert_id=kw.expert_id,
expert_name=kw.expert_name,
expert_domain=expert_domain
) )
logger.info(f"Description prompt: {desc_prompt[:300]}")
desc_response = await ollama_provider.generate( desc_response = await ollama_provider.generate(
desc_prompt, model=model, temperature=temperature desc_prompt, model=model, temperature=temperature
) )
logger.info(f"Description response: {desc_response[:500]}")
desc_data = extract_json_from_response(desc_response) desc_data = extract_json_from_response(desc_response)
descriptions_raw = desc_data.get("descriptions", []) desc_text = desc_data.get("description", "")
for desc in descriptions_raw: if desc_text:
if isinstance(desc, dict) and all(k in desc for k in ["keyword", "expert_id", "expert_name", "description"]): descriptions.append(ExpertTransformationDescription(
descriptions.append(ExpertTransformationDescription(**desc)) keyword=kw.keyword,
expert_id=kw.expert_id,
expert_name=kw.expert_name,
description=desc_text
))
# Send progress update
yield f"event: description_progress\ndata: {json.dumps({'current': idx + 1, 'total': len(all_expert_keywords), 'keyword': kw.keyword}, ensure_ascii=False)}\n\n"
except Exception as e: except Exception as e:
logger.warning(f"Failed to generate descriptions: {e}") logger.warning(f"Failed to generate description for '{kw.keyword}': {e}")
# Continue without descriptions - at least we have keywords # Continue with next keyword
yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n" yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n"

View File

@@ -0,0 +1,201 @@
"""Expert 本地資料來源服務
從本地 JSON 檔案讀取職業資料,提供隨機選取功能。
"""
import json
import logging
import random
from pathlib import Path
from typing import List, Tuple
logger = logging.getLogger(__name__)
# 資料目錄
DATA_DIR = Path(__file__).parent.parent / "data"
class LocalDataProvider:
"""從本地 JSON 檔案讀取職業資料"""
def __init__(self, source: str):
"""
Args:
source: 資料來源名稱 (dbpedia/wikidata)
"""
self.source = source
self._cache: dict = {} # 記憶體快取
def load_occupations(self, language: str = "en") -> List[dict]:
"""
載入職業資料
Args:
language: 語言代碼 (en/zh)
Returns:
職業列表 [{"name": "...", "domain": "..."}, ...]
"""
cache_key = f"{self.source}:{language}"
# 檢查記憶體快取
if cache_key in self._cache:
return self._cache[cache_key]
# 讀取檔案
file_path = DATA_DIR / f"{self.source}_occupations_{language}.json"
if not file_path.exists():
logger.warning(f"資料檔案不存在: {file_path}")
return []
try:
with open(file_path, "r", encoding="utf-8") as f:
data = json.load(f)
occupations = data.get("occupations", [])
logger.info(f"載入 {len(occupations)}{self.source} {language} 職業")
# 存入快取
self._cache[cache_key] = occupations
return occupations
except Exception as e:
logger.error(f"讀取職業資料失敗: {e}")
return []
def random_select(self, count: int, language: str = "en") -> List[dict]:
"""
隨機選取指定數量的職業
Args:
count: 需要的數量
language: 語言代碼
Returns:
隨機選取的職業列表
"""
all_occupations = self.load_occupations(language)
if not all_occupations:
return []
if len(all_occupations) <= count:
return all_occupations
return random.sample(all_occupations, count)
class ExpertSourceService:
"""統一的專家來源服務"""
def __init__(self):
self.curated = LocalDataProvider("curated") # 精選職業
self.dbpedia = LocalDataProvider("dbpedia")
self.wikidata = LocalDataProvider("wikidata")
def get_experts(
self,
source: str,
count: int,
language: str = "en",
fallback_to_llm: bool = True
) -> Tuple[List[dict], str]:
"""
從指定來源獲取專家資料
Args:
source: 來源類型 ("dbpedia" | "wikidata")
count: 需要的專家數量
language: 語言代碼
fallback_to_llm: 失敗時是否允許 fallback由呼叫者處理
Returns:
(專家資料列表, 實際使用的來源)
Raises:
ValueError: 當獲取失敗且資料為空時
"""
# 選擇 provider
if source == "curated":
provider = self.curated
# 精選職業支援 zh 和 en預設使用 zh
if language not in ["zh", "en"]:
language = "zh"
elif source == "wikidata":
provider = self.wikidata
else:
# 預設使用 dbpedia
provider = self.dbpedia
source = "dbpedia"
experts = provider.random_select(count, language)
if not experts:
raise ValueError(f"No occupations found from {source} ({language})")
logger.info(f"{source} 取得 {len(experts)} 位專家")
return experts, source
def get_available_sources(self) -> List[dict]:
"""
取得可用的資料來源資訊
Returns:
來源資訊列表
"""
sources = []
# 檢查精選職業(中文)
curated_zh = DATA_DIR / "curated_occupations_zh.json"
if curated_zh.exists():
with open(curated_zh, "r", encoding="utf-8") as f:
data = json.load(f)
sources.append({
"source": "curated",
"language": "zh",
"count": data["metadata"]["total_count"],
"created_at": data["metadata"]["created_at"]
})
# 檢查精選職業(英文)
curated_en = DATA_DIR / "curated_occupations_en.json"
if curated_en.exists():
with open(curated_en, "r", encoding="utf-8") as f:
data = json.load(f)
sources.append({
"source": "curated",
"language": "en",
"count": data["metadata"]["total_count"],
"created_at": data["metadata"]["created_at"]
})
# 檢查 DBpedia
dbpedia_en = DATA_DIR / "dbpedia_occupations_en.json"
if dbpedia_en.exists():
with open(dbpedia_en, "r", encoding="utf-8") as f:
data = json.load(f)
sources.append({
"source": "dbpedia",
"language": "en",
"count": data["metadata"]["total_count"],
"fetched_at": data["metadata"]["fetched_at"]
})
# 檢查 Wikidata
wikidata_zh = DATA_DIR / "wikidata_occupations_zh.json"
if wikidata_zh.exists():
with open(wikidata_zh, "r", encoding="utf-8") as f:
data = json.load(f)
sources.append({
"source": "wikidata",
"language": "zh",
"count": data["metadata"]["total_count"],
"fetched_at": data["metadata"]["fetched_at"]
})
return sources
# 全域服務實例
expert_source_service = ExpertSourceService()

View File

@@ -0,0 +1,386 @@
#!/usr/bin/env python3
"""
職業資料抓取腳本
從 Wikidata SPARQL 和 ConceptNet API 抓取職業資料,
儲存為本地 JSON 檔案供應用程式使用。
使用方式:
cd backend
python scripts/fetch_occupations.py
"""
import json
import sys
from datetime import datetime, timezone
from pathlib import Path
from typing import List
import httpx
# 輸出目錄
DATA_DIR = Path(__file__).parent.parent / "app" / "data"
def fetch_wikidata_occupations(language: str) -> List[dict]:
"""
從 Wikidata SPARQL 端點抓取所有職業(使用分頁)
Args:
language: 語言代碼 (zh/en)
Returns:
職業列表 [{"name": "...", "domain": "..."}, ...]
"""
print(f"[Wikidata] 正在抓取 {language} 職業資料(分頁模式)...")
endpoint = "https://query.wikidata.org/sparql"
page_size = 500 # 每頁筆數
all_bindings = []
offset = 0
try:
with httpx.Client(timeout=120.0) as client:
while True:
# SPARQL 查詢 - 使用 SERVICE wikibase:label (更高效)
query = f"""
SELECT DISTINCT ?occupation ?occupationLabel ?fieldLabel WHERE {{
?occupation wdt:P31 wd:Q28640.
OPTIONAL {{ ?occupation wdt:P425 ?field. }}
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "{language},en". }}
}}
LIMIT {page_size}
OFFSET {offset}
"""
print(f"[Wikidata] 抓取第 {offset // page_size + 1} 頁 (offset={offset})...")
response = client.get(
endpoint,
params={"query": query, "format": "json"},
headers={
"Accept": "application/sparql-results+json",
"User-Agent": "NoveltySeeking/1.0",
},
)
response.raise_for_status()
data = response.json()
bindings = data.get("results", {}).get("bindings", [])
print(f"[Wikidata] 取得 {len(bindings)}")
if not bindings:
# 沒有更多資料了
break
all_bindings.extend(bindings)
offset += page_size
# 如果取得的筆數少於 page_size表示已經是最後一頁
if len(bindings) < page_size:
break
print(f"[Wikidata] 總共取得 {len(all_bindings)} 筆原始資料")
# 解析回應
occupations = []
for item in all_bindings:
name = item.get("occupationLabel", {}).get("value", "")
field = item.get("fieldLabel", {}).get("value", "")
if name and len(name) >= 2:
occupations.append({
"name": name,
"domain": field if field else infer_domain(name, language),
})
# 去重
seen = set()
unique = []
for occ in occupations:
if occ["name"] not in seen:
seen.add(occ["name"])
unique.append(occ)
print(f"[Wikidata] 去重後: {len(unique)} 筆職業")
return unique
except Exception as e:
print(f"[Wikidata] 錯誤: {e}")
raise
def fetch_conceptnet_occupations(language: str) -> List[dict]:
"""
從 ConceptNet API 抓取職業相關概念(使用分頁)
Args:
language: 語言代碼 (zh/en)
Returns:
職業列表 [{"name": "...", "domain": "..."}, ...]
"""
print(f"[ConceptNet] 正在抓取 {language} 職業資料(分頁模式)...")
endpoint = "https://api.conceptnet.io"
lang_code = language
page_size = 100 # ConceptNet 建議的 limit
# 起始概念
start_concepts = {
"zh": ["/c/zh/職業", "/c/zh/專業", "/c/zh/工作", "/c/zh/職務"],
"en": ["/c/en/occupation", "/c/en/profession", "/c/en/job", "/c/en/career"],
}
# 要查詢的關係類型
relations = ["/r/IsA", "/r/RelatedTo", "/r/HasA", "/r/AtLocation"]
all_occupations = []
try:
with httpx.Client(timeout=60.0) as client:
for concept in start_concepts.get(lang_code, start_concepts["zh"]):
for rel in relations:
offset = 0
max_pages = 5 # 每個組合最多抓 5 頁
for page in range(max_pages):
try:
print(f"[ConceptNet] 查詢 {concept} {rel} (offset={offset})...")
# 查詢 start 參數
response = client.get(
f"{endpoint}/query",
params={
"start": concept,
"rel": rel,
"limit": page_size,
"offset": offset,
},
)
if response.status_code != 200:
print(f"[ConceptNet] HTTP {response.status_code}, 跳過")
break
data = response.json()
edges = data.get("edges", [])
if not edges:
break
parsed = parse_conceptnet_response(data, lang_code)
all_occupations.extend(parsed)
print(f"[ConceptNet] 取得 {len(parsed)}")
if len(edges) < page_size:
break
offset += page_size
except Exception as e:
print(f"[ConceptNet] 錯誤: {e}")
break
# 去重
seen = set()
unique = []
for occ in all_occupations:
if occ["name"] not in seen:
seen.add(occ["name"])
unique.append(occ)
print(f"[ConceptNet] 去重後: {len(unique)} 筆概念")
return unique
except Exception as e:
print(f"[ConceptNet] 錯誤: {e}")
raise
def parse_conceptnet_response(data: dict, lang_code: str) -> List[dict]:
"""解析 ConceptNet API 回應"""
results = []
edges = data.get("edges", [])
for edge in edges:
start = edge.get("start", {})
end = edge.get("end", {})
# 嘗試從兩端取得有意義的概念
for node in [start, end]:
node_id = node.get("@id", "")
label = node.get("label", "")
# 過濾:確保是目標語言且有意義
if f"/c/{lang_code}/" in node_id and label and len(label) >= 2:
# 排除過於泛用的詞
if label not in ["職業", "工作", "專業", "occupation", "job", "profession"]:
results.append({
"name": label,
"domain": infer_domain(label, lang_code),
})
return results
def infer_domain(occupation_name: str, language: str) -> str:
"""根據職業名稱推斷領域"""
if language == "zh":
domain_keywords = {
"": "醫療健康",
"": "醫療健康",
"": "醫療健康",
"": "專業服務",
"工程": "工程技術",
"技術": "工程技術",
"設計": "設計創意",
"藝術": "藝術文化",
"音樂": "藝術文化",
"運動": "體育運動",
"": "農業",
"": "漁業",
"": "商業貿易",
"": "商業貿易",
"": "法律",
"": "法律",
"": "教育",
"研究": "學術研究",
"科學": "學術研究",
"": "餐飲服務",
"": "餐飲服務",
"建築": "建築營造",
"": "軍事國防",
"": "公共安全",
"消防": "公共安全",
"記者": "媒體傳播",
"編輯": "媒體傳播",
"作家": "文學創作",
"程式": "資訊科技",
"軟體": "資訊科技",
"電腦": "資訊科技",
}
else:
domain_keywords = {
"doctor": "Healthcare",
"nurse": "Healthcare",
"medical": "Healthcare",
"engineer": "Engineering",
"technical": "Engineering",
"design": "Design & Creative",
"artist": "Arts & Culture",
"music": "Arts & Culture",
"sport": "Sports",
"athletic": "Sports",
"farm": "Agriculture",
"fish": "Fishery",
"business": "Business",
"sales": "Business",
"law": "Legal",
"attorney": "Legal",
"teach": "Education",
"professor": "Education",
"research": "Academic Research",
"scien": "Academic Research",
"chef": "Culinary",
"cook": "Culinary",
"architect": "Architecture",
"military": "Military",
"police": "Public Safety",
"fire": "Public Safety",
"journal": "Media",
"editor": "Media",
"writer": "Literature",
"author": "Literature",
"program": "Information Technology",
"software": "Information Technology",
"computer": "Information Technology",
"develop": "Information Technology",
}
name_lower = occupation_name.lower()
for keyword, domain in domain_keywords.items():
if keyword in name_lower:
return domain
return "專業領域" if language == "zh" else "Professional Field"
def save_json(data: List[dict], source: str, language: str) -> None:
"""儲存資料到 JSON 檔案"""
filename = f"{source}_occupations_{language}.json"
filepath = DATA_DIR / filename
output = {
"metadata": {
"source": source,
"language": language,
"fetched_at": datetime.now(timezone.utc).isoformat(),
"total_count": len(data),
},
"occupations": data,
}
with open(filepath, "w", encoding="utf-8") as f:
json.dump(output, f, ensure_ascii=False, indent=2)
print(f"[儲存] {filepath} ({len(data)} 筆)")
def main():
"""主程式"""
print("=" * 60)
print("職業資料抓取腳本")
print(f"輸出目錄: {DATA_DIR}")
print("=" * 60)
print()
# 確保輸出目錄存在
DATA_DIR.mkdir(parents=True, exist_ok=True)
# 抓取 Wikidata
print("--- Wikidata ---")
try:
wikidata_zh = fetch_wikidata_occupations("zh")
save_json(wikidata_zh, "wikidata", "zh")
except Exception as e:
print(f"Wikidata 中文抓取失敗: {e}")
wikidata_zh = []
try:
wikidata_en = fetch_wikidata_occupations("en")
save_json(wikidata_en, "wikidata", "en")
except Exception as e:
print(f"Wikidata 英文抓取失敗: {e}")
wikidata_en = []
print()
# 抓取 ConceptNet
print("--- ConceptNet ---")
try:
conceptnet_zh = fetch_conceptnet_occupations("zh")
save_json(conceptnet_zh, "conceptnet", "zh")
except Exception as e:
print(f"ConceptNet 中文抓取失敗: {e}")
conceptnet_zh = []
try:
conceptnet_en = fetch_conceptnet_occupations("en")
save_json(conceptnet_en, "conceptnet", "en")
except Exception as e:
print(f"ConceptNet 英文抓取失敗: {e}")
conceptnet_en = []
print()
print("=" * 60)
print("抓取完成!")
print(f" Wikidata 中文: {len(wikidata_zh)}")
print(f" Wikidata 英文: {len(wikidata_en)}")
print(f" ConceptNet 中文: {len(conceptnet_zh)}")
print(f" ConceptNet 英文: {len(conceptnet_en)}")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -10,7 +10,7 @@ import { useAttribute } from './hooks/useAttribute';
import { getModels } from './services/api'; import { getModels } from './services/api';
import type { MindmapDAGRef } from './components/MindmapDAG'; import type { MindmapDAGRef } from './components/MindmapDAG';
import type { TransformationDAGRef } from './components/TransformationDAG'; import type { TransformationDAGRef } from './components/TransformationDAG';
import type { CategoryMode } from './types'; import type { CategoryMode, ExpertSource } from './types';
const { Header, Sider, Content } = Layout; const { Header, Sider, Content } = Layout;
const { Title } = Typography; const { Title } = Typography;
@@ -33,7 +33,7 @@ function App() {
// Transformation Agent settings // Transformation Agent settings
const [transformModel, setTransformModel] = useState<string>(''); const [transformModel, setTransformModel] = useState<string>('');
const [transformTemperature, setTransformTemperature] = useState<number>(0.7); const [transformTemperature, setTransformTemperature] = useState<number>(0.95);
const [expertConfig, setExpertConfig] = useState<{ const [expertConfig, setExpertConfig] = useState<{
expert_count: number; expert_count: number;
keywords_per_expert: number; keywords_per_expert: number;
@@ -44,6 +44,7 @@ function App() {
custom_experts: undefined, custom_experts: undefined,
}); });
const [customExpertsInput, setCustomExpertsInput] = useState(''); const [customExpertsInput, setCustomExpertsInput] = useState('');
const [expertSource, setExpertSource] = useState<ExpertSource>('llm');
const [shouldStartTransform, setShouldStartTransform] = useState(false); const [shouldStartTransform, setShouldStartTransform] = useState(false);
const [transformLoading, setTransformLoading] = useState(false); const [transformLoading, setTransformLoading] = useState(false);
@@ -186,6 +187,7 @@ function App() {
model={transformModel} model={transformModel}
temperature={transformTemperature} temperature={transformTemperature}
expertConfig={expertConfig} expertConfig={expertConfig}
expertSource={expertSource}
shouldStartTransform={shouldStartTransform} shouldStartTransform={shouldStartTransform}
onTransformComplete={() => setShouldStartTransform(false)} onTransformComplete={() => setShouldStartTransform(false)}
onLoadingChange={setTransformLoading} onLoadingChange={setTransformLoading}
@@ -226,10 +228,12 @@ function App() {
temperature={transformTemperature} temperature={transformTemperature}
expertConfig={expertConfig} expertConfig={expertConfig}
customExpertsInput={customExpertsInput} customExpertsInput={customExpertsInput}
expertSource={expertSource}
onModelChange={setTransformModel} onModelChange={setTransformModel}
onTemperatureChange={setTransformTemperature} onTemperatureChange={setTransformTemperature}
onExpertConfigChange={setExpertConfig} onExpertConfigChange={setExpertConfig}
onCustomExpertsInputChange={setCustomExpertsInput} onCustomExpertsInputChange={setCustomExpertsInput}
onExpertSourceChange={setExpertSource}
availableModels={availableModels} availableModels={availableModels}
/> />
)} )}

View File

@@ -1,9 +1,17 @@
import { Card, Select, Slider, Typography, Space, Button, Divider } from 'antd'; import { Card, Select, Slider, Typography, Space, Button, Divider } from 'antd';
import { ThunderboltOutlined } from '@ant-design/icons'; import { ThunderboltOutlined } from '@ant-design/icons';
import { ExpertConfigPanel } from './transformation'; import { ExpertConfigPanel } from './transformation';
import type { ExpertSource } from '../types';
const { Title, Text } = Typography; const { Title, Text } = Typography;
const EXPERT_SOURCE_OPTIONS = [
{ label: 'LLM 生成', value: 'llm' as ExpertSource, description: '使用 AI 模型生成專家' },
{ label: '精選職業', value: 'curated' as ExpertSource, description: '從 210 個常見職業隨機選取(含具體領域)' },
{ label: 'DBpedia', value: 'dbpedia' as ExpertSource, description: '從 DBpedia 隨機選取職業 (2164 筆)' },
{ label: 'Wikidata', value: 'wikidata' as ExpertSource, description: '從 Wikidata 查詢職業 (需等待 API)' },
];
interface TransformationInputPanelProps { interface TransformationInputPanelProps {
onTransform: () => void; onTransform: () => void;
loading: boolean; loading: boolean;
@@ -17,6 +25,7 @@ interface TransformationInputPanelProps {
custom_experts?: string[]; custom_experts?: string[];
}; };
customExpertsInput: string; customExpertsInput: string;
expertSource: ExpertSource;
onModelChange: (model: string) => void; onModelChange: (model: string) => void;
onTemperatureChange: (temperature: number) => void; onTemperatureChange: (temperature: number) => void;
onExpertConfigChange: (config: { onExpertConfigChange: (config: {
@@ -25,6 +34,7 @@ interface TransformationInputPanelProps {
custom_experts?: string[]; custom_experts?: string[];
}) => void; }) => void;
onCustomExpertsInputChange: (value: string) => void; onCustomExpertsInputChange: (value: string) => void;
onExpertSourceChange: (source: ExpertSource) => void;
availableModels: string[]; availableModels: string[];
} }
@@ -37,10 +47,12 @@ export const TransformationInputPanel: React.FC<TransformationInputPanelProps> =
temperature, temperature,
expertConfig, expertConfig,
customExpertsInput, customExpertsInput,
expertSource,
onModelChange, onModelChange,
onTemperatureChange, onTemperatureChange,
onExpertConfigChange, onExpertConfigChange,
onCustomExpertsInputChange, onCustomExpertsInputChange,
onExpertSourceChange,
availableModels, availableModels,
}) => { }) => {
return ( return (
@@ -108,6 +120,31 @@ export const TransformationInputPanel: React.FC<TransformationInputPanelProps> =
</Space> </Space>
</Card> </Card>
{/* Expert Source Selection */}
<Card
size="small"
title="專家來源"
style={{
background: isDark ? '#1f1f1f' : '#fafafa',
border: `1px solid ${isDark ? '#434343' : '#d9d9d9'}`,
}}
>
<Space direction="vertical" size="small" style={{ width: '100%' }}>
<Select
value={expertSource}
onChange={onExpertSourceChange}
style={{ width: '100%' }}
options={EXPERT_SOURCE_OPTIONS.map((opt) => ({
label: opt.label,
value: opt.value,
}))}
/>
<Text type="secondary" style={{ fontSize: 11 }}>
{EXPERT_SOURCE_OPTIONS.find((opt) => opt.value === expertSource)?.description}
</Text>
</Space>
</Card>
{/* Expert Configuration */} {/* Expert Configuration */}
<ExpertConfigPanel <ExpertConfigPanel
expertCount={expertConfig.expert_count} expertCount={expertConfig.expert_count}

View File

@@ -1,7 +1,7 @@
import { forwardRef, useMemo, useCallback, useEffect } from 'react'; import { forwardRef, useMemo, useCallback, useEffect } from 'react';
import { Empty, Spin, Button, Progress, Card, Space, Typography, Tag } from 'antd'; import { Empty, Spin, Button, Progress, Card, Space, Typography, Tag } from 'antd';
import { ReloadOutlined } from '@ant-design/icons'; import { ReloadOutlined } from '@ant-design/icons';
import type { AttributeDAG, ExpertTransformationInput } from '../types'; import type { AttributeDAG, ExpertTransformationInput, ExpertSource } from '../types';
import { TransformationDAG } from './TransformationDAG'; import { TransformationDAG } from './TransformationDAG';
import type { TransformationDAGRef } from './TransformationDAG'; import type { TransformationDAGRef } from './TransformationDAG';
import { useExpertTransformation } from '../hooks/useExpertTransformation'; import { useExpertTransformation } from '../hooks/useExpertTransformation';
@@ -18,20 +18,21 @@ interface TransformationPanelProps {
keywords_per_expert: number; keywords_per_expert: number;
custom_experts?: string[]; custom_experts?: string[];
}; };
expertSource: ExpertSource;
shouldStartTransform: boolean; shouldStartTransform: boolean;
onTransformComplete: () => void; onTransformComplete: () => void;
onLoadingChange: (loading: boolean) => void; onLoadingChange: (loading: boolean) => void;
} }
export const TransformationPanel = forwardRef<TransformationDAGRef, TransformationPanelProps>( export const TransformationPanel = forwardRef<TransformationDAGRef, TransformationPanelProps>(
({ attributeData, isDark, model, temperature, expertConfig, shouldStartTransform, onTransformComplete, onLoadingChange }, ref) => { ({ attributeData, isDark, model, temperature, expertConfig, expertSource, shouldStartTransform, onTransformComplete, onLoadingChange }, ref) => {
const { const {
loading, loading,
progress, progress,
results, results,
transformAll, transformAll,
clearResults, clearResults,
} = useExpertTransformation({ model, temperature }); } = useExpertTransformation({ model, temperature, expertSource });
// Notify parent of loading state changes // Notify parent of loading state changes
useEffect(() => { useEffect(() => {

View File

@@ -7,11 +7,13 @@ import type {
ExpertTransformationDAGResult, ExpertTransformationDAGResult,
ExpertProfile, ExpertProfile,
CategoryDefinition, CategoryDefinition,
ExpertSource,
} from '../types'; } from '../types';
interface UseExpertTransformationOptions { interface UseExpertTransformationOptions {
model?: string; model?: string;
temperature?: number; temperature?: number;
expertSource?: ExpertSource;
} }
export function useExpertTransformation(options: UseExpertTransformationOptions = {}) { export function useExpertTransformation(options: UseExpertTransformationOptions = {}) {
@@ -60,6 +62,7 @@ export function useExpertTransformation(options: UseExpertTransformationOptions
expert_count: expertConfig.expert_count, expert_count: expertConfig.expert_count,
keywords_per_expert: expertConfig.keywords_per_expert, keywords_per_expert: expertConfig.keywords_per_expert,
custom_experts: expertConfig.custom_experts, custom_experts: expertConfig.custom_experts,
expert_source: options.expertSource,
model: options.model, model: options.model,
temperature: options.temperature, temperature: options.temperature,
}, },
@@ -152,7 +155,7 @@ export function useExpertTransformation(options: UseExpertTransformationOptions
}); });
}); });
}, },
[options.model, options.temperature] [options.model, options.temperature, options.expertSource]
); );
const transformAll = useCallback( const transformAll = useCallback(

View File

@@ -230,6 +230,8 @@ export interface ExpertTransformationDAGResult {
results: ExpertTransformationCategoryResult[]; results: ExpertTransformationCategoryResult[];
} }
export type ExpertSource = 'llm' | 'curated' | 'dbpedia' | 'wikidata';
export interface ExpertTransformationRequest { export interface ExpertTransformationRequest {
query: string; query: string;
category: string; category: string;
@@ -237,6 +239,8 @@ export interface ExpertTransformationRequest {
expert_count: number; // 2-8 expert_count: number; // 2-8
keywords_per_expert: number; // 1-3 keywords_per_expert: number; // 1-3
custom_experts?: string[]; // ["藥師", "工程師"] custom_experts?: string[]; // ["藥師", "工程師"]
expert_source?: ExpertSource; // 專家來源 (default: 'llm')
expert_language?: string; // 外部來源語言 (default: 'en')
model?: string; model?: string;
temperature?: number; temperature?: number;
} }