2 Commits

Author SHA1 Message Date
5571076406 feat: Add curated expert occupations with local data sources
- Add curated occupations seed files (210 entries in zh/en) with specific domains
- Add DBpedia occupations data (2164 entries) for external source option
- Refactor expert_source_service to read from local JSON files
- Improve keyword generation prompts to leverage expert domain context
- Add architecture analysis documentation (ARCHITECTURE_ANALYSIS.md)
- Fix expert source selection bug (proper handling of empty custom_experts)
- Update frontend to support curated/dbpedia/wikidata expert sources

Key changes:
- backend/app/data/: Local occupation data files
- backend/app/services/expert_source_service.py: Simplified local file reading
- backend/app/prompts/expert_transformation_prompt.py: Better domain-aware prompts
- Removed expert_cache.py (no longer needed with local files)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 16:34:35 +08:00
43785db595 feat: Add external expert sources (Wikidata SPARQL + ConceptNet API)
- Add expert_cache.py: TTL-based in-memory cache (1 hour default)
- Add expert_source_service.py: WikidataProvider and ConceptNetProvider
  - Wikidata SPARQL queries for occupations with Chinese labels
  - ConceptNet API queries for occupation-related concepts
  - Random selection from cached pool
- Update schemas.py: Add ExpertSource enum (llm/wikidata/conceptnet)
- Update ExpertTransformationRequest with expert_source and expert_language
- Update router: Conditionally use external sources with LLM fallback
  - New SSE events: expert_source, expert_fallback
- Update frontend types with ExpertSource

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 11:42:48 +08:00