chore: save local changes

This commit is contained in:
2026-01-05 22:32:08 +08:00
parent bc281b8e0a
commit ec48709755
42 changed files with 5576 additions and 254 deletions

View File

@@ -0,0 +1,555 @@
# Experimental Protocol: Expert-Augmented LLM Ideation
## Executive Summary
This document outlines a comprehensive experimental design to test the hypothesis that multi-expert LLM-based ideation produces more diverse and novel ideas than direct LLM generation.
---
## 1. Research Questions
| ID | Research Question |
|----|-------------------|
| **RQ1** | Does multi-expert generation produce higher semantic diversity than direct LLM generation? |
| **RQ2** | Does multi-expert generation produce ideas with lower patent overlap (higher novelty)? |
| **RQ3** | What is the optimal number of experts for maximizing diversity? |
| **RQ4** | How do different expert sources (LLM vs Curated vs DBpedia) affect idea quality? |
| **RQ5** | Does structured attribute decomposition enhance the multi-expert effect? |
---
## 2. Experimental Design Overview
### 2.1 Design Type
**Mixed Design**: Between-subjects for main conditions × Within-subjects for queries
### 2.2 Variables
#### Independent Variables (Manipulated)
| Variable | Levels | Your System Parameter |
|----------|--------|----------------------|
| **Generation Method** | 5 levels (see conditions) | Condition-dependent |
| **Expert Count** | 1, 2, 4, 6, 8 | `expert_count` |
| **Expert Source** | LLM, Curated, DBpedia | `expert_source` |
| **Attribute Structure** | With/Without decomposition | Pipeline inclusion |
#### Dependent Variables (Measured)
| Variable | Measurement Method |
|----------|-------------------|
| **Semantic Diversity** | Mean pairwise cosine distance (embeddings) |
| **Cluster Spread** | Number of clusters, silhouette score |
| **Patent Novelty** | 1 - (ideas with patent match / total ideas) |
| **Semantic Distance** | Distance from query centroid |
| **Human Novelty Rating** | 7-point Likert scale |
| **Human Usefulness Rating** | 7-point Likert scale |
| **Human Creativity Rating** | 7-point Likert scale |
#### Control Variables (Held Constant)
| Variable | Fixed Value |
|----------|-------------|
| LLM Model | Qwen3:8b (or specify) |
| Temperature | 0.7 |
| Total Ideas per Query | 20 |
| Keywords per Expert | 1 |
| Deduplication | Disabled for raw comparison |
| Language | English (for patent search) |
---
## 3. Experimental Conditions
### 3.1 Main Study: Generation Method Comparison
| Condition | Description | Implementation |
|-----------|-------------|----------------|
| **C1: Direct** | Direct LLM generation | Prompt: "Generate 20 creative ideas for [query]" |
| **C2: Single-Expert** | 1 expert × 20 ideas | `expert_count=1`, `keywords_per_expert=20` |
| **C3: Multi-Expert-4** | 4 experts × 5 ideas each | `expert_count=4`, `keywords_per_expert=5` |
| **C4: Multi-Expert-8** | 8 experts × 2-3 ideas each | `expert_count=8`, `keywords_per_expert=2-3` |
| **C5: Random-Perspective** | 4 random words as "perspectives" | Custom prompt with random nouns |
### 3.2 Expert Count Study
| Condition | Expert Count | Ideas per Expert |
|-----------|--------------|------------------|
| **E1** | 1 | 20 |
| **E2** | 2 | 10 |
| **E4** | 4 | 5 |
| **E6** | 6 | 3-4 |
| **E8** | 8 | 2-3 |
### 3.3 Expert Source Study
| Condition | Source | Implementation |
|-----------|--------|----------------|
| **S-LLM** | LLM-generated | `expert_source=ExpertSource.LLM` |
| **S-Curated** | Curated 210 occupations | `expert_source=ExpertSource.CURATED` |
| **S-DBpedia** | DBpedia 2164 occupations | `expert_source=ExpertSource.DBPEDIA` |
| **S-Random** | Random word "experts" | Custom implementation |
---
## 4. Query Dataset
### 4.1 Design Principles
- **Diversity**: Cover multiple domains (consumer products, technology, services, abstract concepts)
- **Complexity Variation**: Simple objects to complex systems
- **Familiarity Variation**: Common items to specialized equipment
- **Cultural Neutrality**: Concepts understandable across cultures
### 4.2 Query Set (30 Queries)
#### Category A: Everyday Objects (10)
| ID | Query | Complexity |
|----|-------|------------|
| A1 | Chair | Low |
| A2 | Umbrella | Low |
| A3 | Backpack | Low |
| A4 | Coffee mug | Low |
| A5 | Bicycle | Medium |
| A6 | Refrigerator | Medium |
| A7 | Smartphone | Medium |
| A8 | Running shoes | Medium |
| A9 | Kitchen knife | Low |
| A10 | Desk lamp | Low |
#### Category B: Technology & Tools (10)
| ID | Query | Complexity |
|----|-------|------------|
| B1 | Solar panel | Medium |
| B2 | Electric vehicle | High |
| B3 | 3D printer | High |
| B4 | Drone | Medium |
| B5 | Smart thermostat | Medium |
| B6 | Noise-canceling headphones | Medium |
| B7 | Water purifier | Medium |
| B8 | Wind turbine | High |
| B9 | Robotic vacuum | Medium |
| B10 | Wearable fitness tracker | Medium |
#### Category C: Services & Systems (10)
| ID | Query | Complexity |
|----|-------|------------|
| C1 | Food delivery service | Medium |
| C2 | Online education platform | High |
| C3 | Healthcare appointment system | High |
| C4 | Public transportation | High |
| C5 | Hotel booking system | Medium |
| C6 | Personal finance app | Medium |
| C7 | Grocery shopping experience | Medium |
| C8 | Parking solution | Medium |
| C9 | Elderly care service | High |
| C10 | Waste management system | High |
### 4.3 Sample Size Justification
Based on [CHI meta-study on effect sizes](https://dl.acm.org/doi/10.1145/3706598.3713671):
- **Queries**: 30 (crossed with conditions)
- **Expected effect size**: d = 0.5 (medium)
- **Power target**: 80%
- **For automatic metrics**: 30 queries × 5 conditions × 20 ideas = 3,000 ideas
- **For human evaluation**: Subset of 10 queries × 3 conditions × 20 ideas = 600 ideas
---
## 5. Automatic Metrics Collection
### 5.1 Semantic Diversity Metrics
#### 5.1.1 Mean Pairwise Distance (Primary)
```python
def compute_mean_pairwise_distance(ideas: List[str], embedding_model: str) -> float:
"""
Compute mean cosine distance between all idea pairs.
Higher = more diverse.
"""
embeddings = get_embeddings(ideas, model=embedding_model)
n = len(embeddings)
distances = []
for i in range(n):
for j in range(i+1, n):
dist = 1 - cosine_similarity(embeddings[i], embeddings[j])
distances.append(dist)
return np.mean(distances), np.std(distances)
```
#### 5.1.2 Cluster Analysis
```python
def compute_cluster_metrics(ideas: List[str], embedding_model: str) -> dict:
"""
Analyze idea clustering patterns.
"""
embeddings = get_embeddings(ideas, model=embedding_model)
# Find optimal k using silhouette score
silhouette_scores = []
for k in range(2, min(len(ideas), 10)):
kmeans = KMeans(n_clusters=k)
labels = kmeans.fit_predict(embeddings)
score = silhouette_score(embeddings, labels)
silhouette_scores.append((k, score))
best_k = max(silhouette_scores, key=lambda x: x[1])[0]
return {
'optimal_clusters': best_k,
'silhouette_score': max(silhouette_scores, key=lambda x: x[1])[1],
'cluster_distribution': compute_cluster_sizes(embeddings, best_k)
}
```
#### 5.1.3 Semantic Distance from Query
```python
def compute_query_distance(query: str, ideas: List[str], embedding_model: str) -> dict:
"""
Measure how far ideas are from the original query.
Higher = more novel/distant.
"""
query_emb = get_embedding(query, model=embedding_model)
idea_embs = get_embeddings(ideas, model=embedding_model)
distances = [1 - cosine_similarity(query_emb, e) for e in idea_embs]
return {
'mean_distance': np.mean(distances),
'max_distance': np.max(distances),
'min_distance': np.min(distances),
'std_distance': np.std(distances)
}
```
### 5.2 Patent Novelty Metrics
#### 5.2.1 Patent Overlap Rate
```python
def compute_patent_novelty(ideas: List[str], query: str) -> dict:
"""
Search patents for each idea and compute overlap rate.
Uses existing patent_search_service.
"""
matches = 0
match_details = []
for idea in ideas:
result = patent_search_service.search(idea)
if result.has_match:
matches += 1
match_details.append({
'idea': idea,
'patent': result.best_match
})
return {
'novelty_rate': 1 - (matches / len(ideas)),
'match_count': matches,
'total_ideas': len(ideas),
'match_details': match_details
}
```
### 5.3 Metrics Summary Table
| Metric | Formula | Interpretation |
|--------|---------|----------------|
| **Mean Pairwise Distance** | avg(1 - cos_sim(i, j)) for all pairs | Higher = more diverse |
| **Silhouette Score** | Cluster cohesion vs separation | Higher = clearer clusters |
| **Optimal Cluster Count** | argmax(silhouette) | More clusters = more themes |
| **Query Distance** | 1 - cos_sim(query, idea) | Higher = farther from original |
| **Patent Novelty Rate** | 1 - (matches / total) | Higher = more novel |
---
## 6. Human Evaluation Protocol
### 6.1 Participants
#### 6.1.1 Recruitment
- **Platform**: Prolific, MTurk, or domain experts
- **Sample Size**: 60 evaluators (20 per condition group)
- **Criteria**:
- Native English speakers
- Bachelor's degree or higher
- Attention check pass rate > 80%
#### 6.1.2 Compensation
- $15/hour equivalent
- ~30 minutes per session
- Bonus for high-quality ratings
### 6.2 Rating Scales
#### 6.2.1 Novelty (7-point Likert)
```
How novel/surprising is this idea?
1 = Not at all novel (very common/obvious)
4 = Moderately novel
7 = Extremely novel (never seen before)
```
#### 6.2.2 Usefulness (7-point Likert)
```
How useful/practical is this idea?
1 = Not at all useful (impractical)
4 = Moderately useful
7 = Extremely useful (highly practical)
```
#### 6.2.3 Creativity (7-point Likert)
```
How creative is this idea overall?
1 = Not at all creative
4 = Moderately creative
7 = Extremely creative
```
### 6.3 Procedure
1. **Introduction** (5 min)
- Study purpose (without revealing hypotheses)
- Rating scale explanation
- Practice with 3 example ideas
2. **Training** (5 min)
- Rate 5 calibration ideas with feedback
- Discuss edge cases
3. **Main Evaluation** (20 min)
- Rate 30 ideas (randomized order)
- 3 attention check items embedded
- Break after 15 ideas
4. **Debriefing** (2 min)
- Demographics
- Open-ended feedback
### 6.4 Quality Control
| Check | Threshold | Action |
|-------|-----------|--------|
| Attention checks | < 2/3 correct | Exclude |
| Completion time | < 10 min | Flag for review |
| Variance in ratings | All same score | Exclude |
| Inter-rater reliability | Cronbach's α < 0.7 | Review ratings |
### 6.5 Analysis Plan
#### 6.5.1 Reliability
- Cronbach's alpha for each scale
- ICC (Intraclass Correlation) for inter-rater agreement
#### 6.5.2 Main Analysis
- Mixed-effects ANOVA: Condition × Query
- Post-hoc: Tukey HSD for pairwise comparisons
- Effect sizes: Cohen's d
#### 6.5.3 Correlation with Automatic Metrics
- Pearson correlation: Human ratings vs semantic diversity
- Regression: Predict human ratings from automatic metrics
---
## 7. Experimental Procedure
### 7.1 Phase 1: Idea Generation
```
For each query Q in QuerySet:
For each condition C in Conditions:
If C == "Direct":
ideas = direct_llm_generation(Q, n=20)
Elif C == "Single-Expert":
expert = generate_expert(Q, n=1)
ideas = expert_transformation(Q, expert, ideas_per_expert=20)
Elif C == "Multi-Expert-4":
experts = generate_experts(Q, n=4)
ideas = expert_transformation(Q, experts, ideas_per_expert=5)
Elif C == "Multi-Expert-8":
experts = generate_experts(Q, n=8)
ideas = expert_transformation(Q, experts, ideas_per_expert=2-3)
Elif C == "Random-Perspective":
perspectives = random.sample(RANDOM_WORDS, 4)
ideas = perspective_generation(Q, perspectives, ideas_per=5)
Store(Q, C, ideas)
```
### 7.2 Phase 2: Automatic Metrics
```
For each (Q, C, ideas) in Results:
metrics = {
'diversity': compute_mean_pairwise_distance(ideas),
'clusters': compute_cluster_metrics(ideas),
'query_distance': compute_query_distance(Q, ideas),
'patent_novelty': compute_patent_novelty(ideas, Q)
}
Store(Q, C, metrics)
```
### 7.3 Phase 3: Human Evaluation
```
# Sample selection
selected_queries = random.sample(QuerySet, 10)
selected_conditions = ["Direct", "Multi-Expert-4", "Multi-Expert-8"]
# Create evaluation set
evaluation_items = []
For each Q in selected_queries:
For each C in selected_conditions:
ideas = Get(Q, C)
For each idea in ideas:
evaluation_items.append((Q, C, idea))
# Randomize and assign to evaluators
random.shuffle(evaluation_items)
assignments = assign_to_evaluators(evaluation_items, n_evaluators=60)
# Collect ratings
ratings = collect_human_ratings(assignments)
```
### 7.4 Phase 4: Analysis
```
# Automatic metrics analysis
Run ANOVA: diversity ~ condition + query + condition:query
Run post-hoc: Tukey HSD for condition pairs
Compute effect sizes
# Human ratings analysis
Check reliability: Cronbach's alpha, ICC
Run mixed-effects model: rating ~ condition + (1|evaluator) + (1|query)
Compute correlations: human vs automatic metrics
# Visualization
Plot: Diversity by condition (box plots)
Plot: t-SNE of idea embeddings colored by condition
Plot: Expert count vs diversity curve
```
---
## 8. Implementation Checklist
### 8.1 Code to Implement
- [ ] `experiments/generate_ideas.py` - Idea generation for all conditions
- [ ] `experiments/compute_metrics.py` - Automatic metric computation
- [ ] `experiments/export_for_evaluation.py` - Prepare human evaluation set
- [ ] `experiments/analyze_results.py` - Statistical analysis
- [ ] `experiments/visualize.py` - Generate figures
### 8.2 Data Files to Create
- [ ] `data/queries.json` - 30 queries with metadata
- [ ] `data/random_words.json` - Random perspective words
- [ ] `data/generated_ideas/` - Raw idea outputs
- [ ] `data/metrics/` - Computed metric results
- [ ] `data/human_ratings/` - Collected ratings
### 8.3 Analysis Outputs
- [ ] `results/diversity_by_condition.csv`
- [ ] `results/patent_novelty_by_condition.csv`
- [ ] `results/human_ratings_summary.csv`
- [ ] `results/statistical_tests.txt`
- [ ] `figures/` - All visualizations
---
## 9. Expected Results & Hypotheses
### 9.1 Primary Hypotheses
| Hypothesis | Prediction | Metric |
|------------|------------|--------|
| **H1** | Multi-Expert-4 > Single-Expert > Direct | Semantic diversity |
| **H2** | Multi-Expert-8 ≈ Multi-Expert-4 (diminishing returns) | Semantic diversity |
| **H3** | Multi-Expert > Direct | Patent novelty rate |
| **H4** | LLM experts > Curated > DBpedia | Unconventionality |
| **H5** | With attributes > Without attributes | Overall diversity |
### 9.2 Expected Effect Sizes
Based on related work:
- Diversity increase: d = 0.5-0.8 (medium to large)
- Patent novelty increase: 20-40% improvement
- Human creativity rating: d = 0.3-0.5 (small to medium)
### 9.3 Potential Confounds
| Confound | Mitigation |
|----------|-----------|
| Query difficulty | Crossed design (all queries × all conditions) |
| LLM variability | Multiple runs, fixed seed where possible |
| Evaluator bias | Randomized presentation, blinding |
| Order effects | Counterbalancing in human evaluation |
---
## 10. Timeline
| Week | Activity |
|------|----------|
| 1-2 | Implement idea generation scripts |
| 3 | Generate all ideas (5 conditions × 30 queries) |
| 4 | Compute automatic metrics |
| 5 | Design and pilot human evaluation |
| 6-7 | Run human evaluation (60 participants) |
| 8 | Analyze results |
| 9-10 | Write paper |
| 11 | Internal review |
| 12 | Submit |
---
## 11. Appendix: Direct Generation Prompt
For baseline condition C1 (Direct LLM generation):
```
You are a creative innovation consultant. Generate 20 unique and creative ideas
for improving or reimagining a [QUERY].
Requirements:
- Each idea should be distinct and novel
- Ideas should range from incremental improvements to radical innovations
- Consider different aspects: materials, functions, user experiences, contexts
- Provide a brief (15-30 word) description for each idea
Output format:
1. [Idea keyword]: [Description]
2. [Idea keyword]: [Description]
...
20. [Idea keyword]: [Description]
```
---
## 12. Appendix: Random Perspective Words
For condition C5 (Random-Perspective), sample from:
```json
[
"ocean", "mountain", "forest", "desert", "cave",
"microscope", "telescope", "kaleidoscope", "prism", "lens",
"butterfly", "elephant", "octopus", "eagle", "ant",
"sunrise", "thunderstorm", "rainbow", "fog", "aurora",
"clockwork", "origami", "mosaic", "symphony", "ballet",
"ancient", "futuristic", "organic", "crystalline", "liquid",
"whisper", "explosion", "rhythm", "silence", "echo"
]
```
This tests whether ANY perspective shift helps, or if EXPERT perspectives specifically matter.