feat: Improve expert diversity and description reliability

- Add random seed and diversity hints to expert generation prompt
- Explicitly avoid common professions (醫生、工程師、教師、律師等)
- Change description generation from batch to one-by-one for reliability
- Increase default temperature from 0.7 to 0.95 for more creative output
- Add description_progress SSE event for real-time feedback

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-12-04 11:24:03 +08:00
parent 9079f7a8a9
commit baea210109
3 changed files with 68 additions and 45 deletions

View File

@@ -10,20 +10,40 @@ def get_expert_generation_prompt(
custom_experts: Optional[List[str]] = None
) -> str:
"""Step 0: 生成專家團隊(不依賴主題,純隨機多元)"""
import time
import random
custom_text = ""
if custom_experts and len(custom_experts) > 0:
custom_text = f"(已指定:{', '.join(custom_experts[:expert_count])}"
# 加入時間戳和隨機數來增加多樣性
seed = int(time.time() * 1000) % 10000
diversity_hints = [
"冷門、非主流、跨領域",
"罕見職業、新興領域、邊緣學科",
"非傳統、創新、小眾專業",
"未來趨向、實驗性、非常規",
"跨文化、混合領域、獨特視角"
]
hint = random.choice(diversity_hints)
return f"""/no_think
隨機組建 {expert_count} 個來自完全不同領域的專家團隊{custom_text}
【創新要求】(隨機種子:{seed}
- 優先選擇{hint}的專家
- 避免常見職業(如醫生、工程師、教師、律師等)
- 每個專家必須來自完全不相關的領域
- 越罕見、越創新越好
回傳 JSON
{{"experts": [{{"id": "expert-0", "name": "職業", "domain": "領域", "perspective": "角度"}}, ...]}}
規則:
- id 為 expert-0 到 expert-{expert_count - 1}
- name 填寫職業名稱非人名2-5字
- 各專家的 domain 必須來自截然不同的領域,越多元越好"""
- domain 要具體且獨特,不可重複類型"""
def get_expert_keyword_generation_prompt(
@@ -48,31 +68,20 @@ def get_expert_keyword_generation_prompt(
共需 {len(experts) * keywords_per_expert} 個關鍵字。"""
def get_expert_batch_description_prompt(
def get_single_description_prompt(
query: str,
category: str,
expert_keywords: List[dict] # List[ExpertKeyword]
keyword: str,
expert_id: str,
expert_name: str,
expert_domain: str
) -> str:
"""Step 2: 批次生成專家關鍵字描述"""
keywords_info = ", ".join([
f"{kw['expert_name']}:{kw['keyword']}"
for kw in expert_keywords
])
# 建立 keyword -> (expert_id, expert_name) 的對照
keyword_expert_map = ", ".join([
f"{kw['keyword']}{kw['expert_id']}/{kw['expert_name']}"
for kw in expert_keywords
])
"""Step 2: 為單一關鍵字生成描述"""
return f"""/no_think
物件:「{query}
關鍵字(專家:詞彙):{keywords_info}
對照{keyword_expert_map}
專家:{expert_name}{expert_domain}
關鍵字{keyword}
為每個關鍵字生成創新描述15-30字說明如何將該概念應用到「{query}」上。
從這位專家的視角生成一段創新應用描述15-30字說明如何將「{keyword}」的概念應用到「{query}」上。
回傳 JSON
{{"descriptions": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱", "description": "應用描述"}}, ...]}}
共需 {len(expert_keywords)} 個描述。"""
{{"description": "應用描述"}}"""

View File

@@ -17,7 +17,7 @@ from ..models.schemas import (
from ..prompts.expert_transformation_prompt import (
get_expert_generation_prompt,
get_expert_keyword_generation_prompt,
get_expert_batch_description_prompt,
get_single_description_prompt,
)
from ..services.llm_service import ollama_provider, extract_json_from_response
@@ -119,34 +119,48 @@ async def generate_expert_transformation_events(
yield f"event: error\ndata: {json.dumps({'error': '無法生成關鍵字'}, ensure_ascii=False)}\n\n"
return
# ========== Step 2: Generate descriptions for each expert keyword ==========
yield f"event: description_start\ndata: {json.dumps({'message': '為專家關鍵字生成創新應用描述...'}, ensure_ascii=False)}\n\n"
# ========== Step 2: Generate descriptions one by one ==========
yield f"event: description_start\ndata: {json.dumps({'message': '為專家關鍵字生成創新應用描述...', 'total': len(all_expert_keywords)}, ensure_ascii=False)}\n\n"
descriptions: List[ExpertTransformationDescription] = []
# Build expert lookup for domain info
expert_lookup = {exp.id: exp for exp in experts}
for idx, kw in enumerate(all_expert_keywords):
try:
desc_prompt = get_expert_batch_description_prompt(
expert = expert_lookup.get(kw.expert_id)
expert_domain = expert.domain if expert else ""
desc_prompt = get_single_description_prompt(
query=request.query,
category=request.category,
expert_keywords=[kw.model_dump() for kw in all_expert_keywords]
keyword=kw.keyword,
expert_id=kw.expert_id,
expert_name=kw.expert_name,
expert_domain=expert_domain
)
logger.info(f"Description prompt: {desc_prompt[:300]}")
desc_response = await ollama_provider.generate(
desc_prompt, model=model, temperature=temperature
)
logger.info(f"Description response: {desc_response[:500]}")
desc_data = extract_json_from_response(desc_response)
descriptions_raw = desc_data.get("descriptions", [])
desc_text = desc_data.get("description", "")
for desc in descriptions_raw:
if isinstance(desc, dict) and all(k in desc for k in ["keyword", "expert_id", "expert_name", "description"]):
descriptions.append(ExpertTransformationDescription(**desc))
if desc_text:
descriptions.append(ExpertTransformationDescription(
keyword=kw.keyword,
expert_id=kw.expert_id,
expert_name=kw.expert_name,
description=desc_text
))
# Send progress update
yield f"event: description_progress\ndata: {json.dumps({'current': idx + 1, 'total': len(all_expert_keywords), 'keyword': kw.keyword}, ensure_ascii=False)}\n\n"
except Exception as e:
logger.warning(f"Failed to generate descriptions: {e}")
# Continue without descriptions - at least we have keywords
logger.warning(f"Failed to generate description for '{kw.keyword}': {e}")
# Continue with next keyword
yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n"

View File

@@ -33,7 +33,7 @@ function App() {
// Transformation Agent settings
const [transformModel, setTransformModel] = useState<string>('');
const [transformTemperature, setTransformTemperature] = useState<number>(0.7);
const [transformTemperature, setTransformTemperature] = useState<number>(0.95);
const [expertConfig, setExpertConfig] = useState<{
expert_count: number;
keywords_per_expert: number;