feat: Add curated expert occupations with local data sources
- Add curated occupations seed files (210 entries in zh/en) with specific domains - Add DBpedia occupations data (2164 entries) for external source option - Refactor expert_source_service to read from local JSON files - Improve keyword generation prompts to leverage expert domain context - Add architecture analysis documentation (ARCHITECTURE_ANALYSIS.md) - Fix expert source selection bug (proper handling of empty custom_experts) - Update frontend to support curated/dbpedia/wikidata expert sources Key changes: - backend/app/data/: Local occupation data files - backend/app/services/expert_source_service.py: Simplified local file reading - backend/app/prompts/expert_transformation_prompt.py: Better domain-aware prompts - Removed expert_cache.py (no longer needed with local files) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -53,19 +53,32 @@ def get_expert_keyword_generation_prompt(
|
||||
keywords_per_expert: int = 1
|
||||
) -> str:
|
||||
"""Step 1: 專家視角關鍵字生成"""
|
||||
experts_info = ", ".join([f"{exp['id']}:{exp['name']}({exp['domain']})" for exp in experts])
|
||||
# 建立專家列表,格式更清晰
|
||||
experts_list = "\n".join([f"- {exp['id']}: {exp['name']}" for exp in experts])
|
||||
|
||||
return f"""/no_think
|
||||
專家團隊:{experts_info}
|
||||
屬性:「{attribute}」({category})
|
||||
你需要扮演以下專家,為屬性生成創新關鍵字:
|
||||
|
||||
每位專家從自己的專業視角為此屬性生成 {keywords_per_expert} 個創新關鍵字(2-6字)。
|
||||
關鍵字要反映該專家領域的獨特思考方式。
|
||||
【專家名單】
|
||||
{experts_list}
|
||||
|
||||
【任務】
|
||||
屬性:「{attribute}」(類別:{category})
|
||||
|
||||
請為每位專家:
|
||||
1. 先理解該職業的專業背景、知識領域、工作內容
|
||||
2. 從該職業的獨特視角思考「{attribute}」
|
||||
3. 生成 {keywords_per_expert} 個與該專業相關的創新關鍵字(2-6字)
|
||||
|
||||
關鍵字必須反映該專家的專業思維方式,例如:
|
||||
- 會計師 看「移動」→「資金流動」「成本效益」
|
||||
- 建築師 看「移動」→「動線設計」「空間流動」
|
||||
- 心理師 看「移動」→「行為動機」「情緒轉變」
|
||||
|
||||
回傳 JSON:
|
||||
{{"keywords": [{{"keyword": "詞彙", "expert_id": "expert-X", "expert_name": "名稱"}}, ...]}}
|
||||
|
||||
共需 {len(experts) * keywords_per_expert} 個關鍵字。"""
|
||||
共需 {len(experts) * keywords_per_expert} 個關鍵字,每個關鍵字必須明顯與對應專家的專業領域相關。"""
|
||||
|
||||
|
||||
def get_single_description_prompt(
|
||||
@@ -76,12 +89,17 @@ def get_single_description_prompt(
|
||||
expert_domain: str
|
||||
) -> str:
|
||||
"""Step 2: 為單一關鍵字生成描述"""
|
||||
# 如果 domain 是通用的,就只用職業名稱
|
||||
domain_text = f"({expert_domain})" if expert_domain and expert_domain != "Professional Field" else ""
|
||||
|
||||
return f"""/no_think
|
||||
物件:「{query}」
|
||||
專家:{expert_name}({expert_domain})
|
||||
專家:{expert_name}{domain_text}
|
||||
關鍵字:{keyword}
|
||||
|
||||
從這位專家的視角,生成一段創新應用描述(15-30字),說明如何將「{keyword}」的概念應用到「{query}」上。
|
||||
你是一位{expert_name}。從你的專業視角,生成一段創新應用描述(15-30字),說明如何將「{keyword}」的概念應用到「{query}」上。
|
||||
|
||||
描述要體現{expert_name}的專業思維和獨特觀點。
|
||||
|
||||
回傳 JSON:
|
||||
{{"description": "應用描述"}}"""
|
||||
|
||||
Reference in New Issue
Block a user