feat: Add Expert Transformation Agent with multi-expert perspective system
- Backend: Add expert transformation router with 3-step SSE pipeline - Step 0: Generate diverse expert team (random domains) - Step 1: Each expert generates keywords for attributes - Step 2: Batch generate descriptions for expert keywords - Backend: Add simplified prompts for reliable JSON output - Frontend: Add TransformationPanel with React Flow visualization - Frontend: Add TransformationInputPanel for expert configuration - Expert count (2-8), keywords per expert (1-3) - Custom expert domains support - Frontend: Add expert keyword nodes with expert badges - Frontend: Improve description card layout (wider cards, more spacing) - Frontend: Add fallback for missing descriptions with visual indicators 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
116
backend/app/routers/transformation.py
Normal file
116
backend/app/routers/transformation.py
Normal file
@@ -0,0 +1,116 @@
|
||||
"""Transformation Agent 路由模組"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import AsyncGenerator, List
|
||||
|
||||
from fastapi import APIRouter
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
from ..models.schemas import (
|
||||
TransformationRequest,
|
||||
TransformationCategoryResult,
|
||||
TransformationDescription,
|
||||
)
|
||||
from ..prompts.transformation_prompt import (
|
||||
get_keyword_generation_prompt,
|
||||
get_batch_description_prompt,
|
||||
)
|
||||
from ..services.llm_service import ollama_provider, extract_json_from_response
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter(prefix="/api/transformation", tags=["transformation"])
|
||||
|
||||
|
||||
async def generate_transformation_events(
|
||||
request: TransformationRequest
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""Generate SSE events for transformation process"""
|
||||
try:
|
||||
temperature = request.temperature if request.temperature is not None else 0.7
|
||||
model = request.model
|
||||
|
||||
# ========== Step 1: Generate new keywords ==========
|
||||
yield f"event: keyword_start\ndata: {json.dumps({'message': f'為「{request.category}」生成新關鍵字...'}, ensure_ascii=False)}\n\n"
|
||||
|
||||
keyword_prompt = get_keyword_generation_prompt(
|
||||
category=request.category,
|
||||
attributes=request.attributes,
|
||||
keyword_count=request.keyword_count
|
||||
)
|
||||
logger.info(f"Keyword prompt: {keyword_prompt[:200]}")
|
||||
|
||||
keyword_response = await ollama_provider.generate(
|
||||
keyword_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Keyword response: {keyword_response[:500]}")
|
||||
|
||||
keyword_data = extract_json_from_response(keyword_response)
|
||||
new_keywords = keyword_data.get("keywords", [])
|
||||
|
||||
yield f"event: keyword_complete\ndata: {json.dumps({'keywords': new_keywords}, ensure_ascii=False)}\n\n"
|
||||
|
||||
if not new_keywords:
|
||||
yield f"event: error\ndata: {json.dumps({'error': '無法生成新關鍵字'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
|
||||
# ========== Step 2: Generate descriptions for each keyword ==========
|
||||
yield f"event: description_start\ndata: {json.dumps({'message': '生成創新應用描述...'}, ensure_ascii=False)}\n\n"
|
||||
|
||||
# Use batch description prompt for efficiency
|
||||
desc_prompt = get_batch_description_prompt(
|
||||
query=request.query,
|
||||
category=request.category,
|
||||
keywords=new_keywords
|
||||
)
|
||||
logger.info(f"Description prompt: {desc_prompt[:300]}")
|
||||
|
||||
desc_response = await ollama_provider.generate(
|
||||
desc_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Description response: {desc_response[:500]}")
|
||||
|
||||
desc_data = extract_json_from_response(desc_response)
|
||||
descriptions_raw = desc_data.get("descriptions", [])
|
||||
|
||||
# Convert to TransformationDescription objects
|
||||
descriptions: List[TransformationDescription] = []
|
||||
for desc in descriptions_raw:
|
||||
if isinstance(desc, dict) and "keyword" in desc and "description" in desc:
|
||||
descriptions.append(TransformationDescription(
|
||||
keyword=desc["keyword"],
|
||||
description=desc["description"]
|
||||
))
|
||||
|
||||
yield f"event: description_complete\ndata: {json.dumps({'count': len(descriptions)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
# ========== Build final result ==========
|
||||
result = TransformationCategoryResult(
|
||||
category=request.category,
|
||||
original_attributes=request.attributes,
|
||||
new_keywords=new_keywords,
|
||||
descriptions=descriptions
|
||||
)
|
||||
|
||||
final_data = {
|
||||
"result": result.model_dump()
|
||||
}
|
||||
yield f"event: done\ndata: {json.dumps(final_data, ensure_ascii=False)}\n\n"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Transformation error: {e}")
|
||||
yield f"event: error\ndata: {json.dumps({'error': str(e)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
|
||||
@router.post("/category")
|
||||
async def transform_category(request: TransformationRequest):
|
||||
"""處理單一類別的轉換"""
|
||||
return StreamingResponse(
|
||||
generate_transformation_events(request),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
},
|
||||
)
|
||||
Reference in New Issue
Block a user