feat: Add external expert sources (Wikidata SPARQL + ConceptNet API)
- Add expert_cache.py: TTL-based in-memory cache (1 hour default) - Add expert_source_service.py: WikidataProvider and ConceptNetProvider - Wikidata SPARQL queries for occupations with Chinese labels - ConceptNet API queries for occupation-related concepts - Random selection from cached pool - Update schemas.py: Add ExpertSource enum (llm/wikidata/conceptnet) - Update ExpertTransformationRequest with expert_source and expert_language - Update router: Conditionally use external sources with LLM fallback - New SSE events: expert_source, expert_fallback - Update frontend types with ExpertSource 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -206,6 +206,13 @@ class ExpertTransformationDAGResult(BaseModel):
|
||||
results: List[ExpertTransformationCategoryResult]
|
||||
|
||||
|
||||
class ExpertSource(str, Enum):
|
||||
"""專家來源類型"""
|
||||
LLM = "llm"
|
||||
WIKIDATA = "wikidata"
|
||||
CONCEPTNET = "conceptnet"
|
||||
|
||||
|
||||
class ExpertTransformationRequest(BaseModel):
|
||||
"""Expert Transformation Agent 請求"""
|
||||
query: str
|
||||
@@ -217,6 +224,10 @@ class ExpertTransformationRequest(BaseModel):
|
||||
keywords_per_expert: int = 1 # 每個專家為每個屬性生成幾個關鍵字 (1-3)
|
||||
custom_experts: Optional[List[str]] = None # 用戶指定專家 ["藥師", "工程師"]
|
||||
|
||||
# Expert source parameters
|
||||
expert_source: ExpertSource = ExpertSource.LLM # 專家來源
|
||||
expert_language: str = "zh" # 外部來源的語言
|
||||
|
||||
# LLM parameters
|
||||
model: Optional[str] = None
|
||||
temperature: Optional[float] = 0.7
|
||||
|
||||
@@ -13,6 +13,7 @@ from ..models.schemas import (
|
||||
ExpertKeyword,
|
||||
ExpertTransformationCategoryResult,
|
||||
ExpertTransformationDescription,
|
||||
ExpertSource,
|
||||
)
|
||||
from ..prompts.expert_transformation_prompt import (
|
||||
get_expert_generation_prompt,
|
||||
@@ -20,6 +21,7 @@ from ..prompts.expert_transformation_prompt import (
|
||||
get_single_description_prompt,
|
||||
)
|
||||
from ..services.llm_service import ollama_provider, extract_json_from_response
|
||||
from ..services.expert_source_service import expert_source_service
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter(prefix="/api/expert-transformation", tags=["expert-transformation"])
|
||||
@@ -35,36 +37,98 @@ async def generate_expert_transformation_events(
|
||||
model = request.model
|
||||
|
||||
# ========== Step 0: Generate expert team ==========
|
||||
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...'}, ensure_ascii=False)}\n\n"
|
||||
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...', 'source': request.expert_source.value}, ensure_ascii=False)}\n\n"
|
||||
|
||||
experts: List[ExpertProfile] = []
|
||||
actual_source = request.expert_source.value
|
||||
|
||||
try:
|
||||
expert_prompt = get_expert_generation_prompt(
|
||||
query=request.query,
|
||||
categories=all_categories,
|
||||
expert_count=request.expert_count,
|
||||
custom_experts=request.custom_experts
|
||||
)
|
||||
logger.info(f"Expert prompt: {expert_prompt[:200]}")
|
||||
# 決定使用哪種來源生成專家
|
||||
use_llm = (
|
||||
request.expert_source == ExpertSource.LLM or
|
||||
request.custom_experts # 有自訂專家時,使用 LLM 補充
|
||||
)
|
||||
|
||||
expert_response = await ollama_provider.generate(
|
||||
expert_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Expert response: {expert_response[:500]}")
|
||||
if use_llm:
|
||||
# LLM 生成專家
|
||||
try:
|
||||
expert_prompt = get_expert_generation_prompt(
|
||||
query=request.query,
|
||||
categories=all_categories,
|
||||
expert_count=request.expert_count,
|
||||
custom_experts=request.custom_experts
|
||||
)
|
||||
logger.info(f"Expert prompt: {expert_prompt[:200]}")
|
||||
|
||||
expert_data = extract_json_from_response(expert_response)
|
||||
experts_raw = expert_data.get("experts", [])
|
||||
expert_response = await ollama_provider.generate(
|
||||
expert_prompt, model=model, temperature=temperature
|
||||
)
|
||||
logger.info(f"Expert response: {expert_response[:500]}")
|
||||
|
||||
for exp in experts_raw:
|
||||
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
|
||||
experts.append(ExpertProfile(**exp))
|
||||
expert_data = extract_json_from_response(expert_response)
|
||||
experts_raw = expert_data.get("experts", [])
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate experts: {e}")
|
||||
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
for exp in experts_raw:
|
||||
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
|
||||
experts.append(ExpertProfile(**exp))
|
||||
|
||||
actual_source = "llm"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate experts via LLM: {e}")
|
||||
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
else:
|
||||
# 外部來源生成專家
|
||||
try:
|
||||
experts_data, actual_source = await expert_source_service.get_experts(
|
||||
source=request.expert_source.value,
|
||||
count=request.expert_count,
|
||||
language=request.expert_language
|
||||
)
|
||||
|
||||
for i, exp_data in enumerate(experts_data):
|
||||
experts.append(ExpertProfile(
|
||||
id=f"expert-{i}",
|
||||
name=exp_data["name"],
|
||||
domain=exp_data["domain"],
|
||||
perspective=f"從{exp_data['domain']}角度思考"
|
||||
))
|
||||
|
||||
logger.info(f"Generated {len(experts)} experts from {actual_source}")
|
||||
|
||||
except Exception as e:
|
||||
# 外部來源失敗,fallback 到 LLM
|
||||
logger.warning(f"External source failed: {e}, falling back to LLM")
|
||||
yield f"event: expert_fallback\ndata: {json.dumps({'original': request.expert_source.value, 'fallback': 'llm', 'reason': str(e)}, ensure_ascii=False)}\n\n"
|
||||
|
||||
try:
|
||||
expert_prompt = get_expert_generation_prompt(
|
||||
query=request.query,
|
||||
categories=all_categories,
|
||||
expert_count=request.expert_count,
|
||||
custom_experts=request.custom_experts
|
||||
)
|
||||
|
||||
expert_response = await ollama_provider.generate(
|
||||
expert_prompt, model=model, temperature=temperature
|
||||
)
|
||||
|
||||
expert_data = extract_json_from_response(expert_response)
|
||||
experts_raw = expert_data.get("experts", [])
|
||||
|
||||
for exp in experts_raw:
|
||||
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
|
||||
experts.append(ExpertProfile(**exp))
|
||||
|
||||
actual_source = "llm"
|
||||
|
||||
except Exception as llm_error:
|
||||
logger.error(f"LLM fallback also failed: {llm_error}")
|
||||
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(llm_error)}'}, ensure_ascii=False)}\n\n"
|
||||
return
|
||||
|
||||
# 回報來源資訊
|
||||
yield f"event: expert_source\ndata: {json.dumps({'source': actual_source}, ensure_ascii=False)}\n\n"
|
||||
yield f"event: expert_complete\ndata: {json.dumps({'experts': [e.model_dump() for e in experts]}, ensure_ascii=False)}\n\n"
|
||||
|
||||
if not experts:
|
||||
|
||||
92
backend/app/services/expert_cache.py
Normal file
92
backend/app/services/expert_cache.py
Normal file
@@ -0,0 +1,92 @@
|
||||
"""Expert 資料快取模組
|
||||
|
||||
提供 TTL-based 快取機制,減少外部 API 呼叫。
|
||||
"""
|
||||
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
class CacheEntry:
|
||||
"""快取項目"""
|
||||
data: List[dict]
|
||||
timestamp: float
|
||||
|
||||
|
||||
class ExpertCache:
|
||||
"""TTL 快取,用於儲存外部來源的職業資料"""
|
||||
|
||||
def __init__(self, ttl_seconds: int = 3600):
|
||||
"""
|
||||
初始化快取
|
||||
|
||||
Args:
|
||||
ttl_seconds: 快取存活時間(預設 1 小時)
|
||||
"""
|
||||
self._cache: Dict[str, CacheEntry] = {}
|
||||
self._ttl = ttl_seconds
|
||||
|
||||
def get(self, key: str) -> Optional[List[dict]]:
|
||||
"""
|
||||
取得快取資料
|
||||
|
||||
Args:
|
||||
key: 快取鍵(如 "wikidata:zh:occupations")
|
||||
|
||||
Returns:
|
||||
快取的資料列表,若不存在或已過期則回傳 None
|
||||
"""
|
||||
entry = self._cache.get(key)
|
||||
if entry is None:
|
||||
return None
|
||||
|
||||
# 檢查是否過期
|
||||
if time.time() - entry.timestamp > self._ttl:
|
||||
del self._cache[key]
|
||||
return None
|
||||
|
||||
return entry.data
|
||||
|
||||
def set(self, key: str, data: List[dict]) -> None:
|
||||
"""
|
||||
設定快取資料
|
||||
|
||||
Args:
|
||||
key: 快取鍵
|
||||
data: 要快取的資料列表
|
||||
"""
|
||||
self._cache[key] = CacheEntry(
|
||||
data=data,
|
||||
timestamp=time.time()
|
||||
)
|
||||
|
||||
def invalidate(self, key: Optional[str] = None) -> None:
|
||||
"""
|
||||
清除快取
|
||||
|
||||
Args:
|
||||
key: 要清除的鍵,若為 None 則清除全部
|
||||
"""
|
||||
if key is None:
|
||||
self._cache.clear()
|
||||
elif key in self._cache:
|
||||
del self._cache[key]
|
||||
|
||||
def get_stats(self) -> dict:
|
||||
"""取得快取統計資訊"""
|
||||
now = time.time()
|
||||
valid_count = sum(
|
||||
1 for entry in self._cache.values()
|
||||
if now - entry.timestamp <= self._ttl
|
||||
)
|
||||
return {
|
||||
"total_entries": len(self._cache),
|
||||
"valid_entries": valid_count,
|
||||
"ttl_seconds": self._ttl
|
||||
}
|
||||
|
||||
|
||||
# 全域快取實例
|
||||
expert_cache = ExpertCache()
|
||||
331
backend/app/services/expert_source_service.py
Normal file
331
backend/app/services/expert_source_service.py
Normal file
@@ -0,0 +1,331 @@
|
||||
"""Expert 外部資料來源服務
|
||||
|
||||
提供從 Wikidata SPARQL 和 ConceptNet API 獲取職業/領域資料的功能。
|
||||
"""
|
||||
|
||||
import logging
|
||||
import random
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import httpx
|
||||
|
||||
from .expert_cache import expert_cache
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ExpertSourceProvider(ABC):
|
||||
"""外部來源提供者抽象類"""
|
||||
|
||||
@abstractmethod
|
||||
async def fetch_occupations(
|
||||
self, count: int, language: str = "zh"
|
||||
) -> List[dict]:
|
||||
"""
|
||||
獲取職業列表
|
||||
|
||||
Args:
|
||||
count: 需要的職業數量
|
||||
language: 語言代碼 (zh/en)
|
||||
|
||||
Returns:
|
||||
職業資料列表 [{"name": "...", "domain": "..."}, ...]
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class WikidataProvider(ExpertSourceProvider):
|
||||
"""Wikidata SPARQL 查詢提供者"""
|
||||
|
||||
ENDPOINT = "https://query.wikidata.org/sparql"
|
||||
|
||||
def __init__(self):
|
||||
self.client = httpx.AsyncClient(timeout=30.0)
|
||||
|
||||
async def fetch_occupations(
|
||||
self, count: int, language: str = "zh"
|
||||
) -> List[dict]:
|
||||
"""從 Wikidata 獲取職業列表"""
|
||||
cache_key = f"wikidata:{language}:occupations"
|
||||
|
||||
# 檢查快取
|
||||
cached = expert_cache.get(cache_key)
|
||||
if cached:
|
||||
logger.info(f"Wikidata cache hit: {len(cached)} occupations")
|
||||
return self._random_select(cached, count)
|
||||
|
||||
# SPARQL 查詢
|
||||
query = self._build_sparql_query(language)
|
||||
|
||||
try:
|
||||
response = await self.client.get(
|
||||
self.ENDPOINT,
|
||||
params={"query": query, "format": "json"},
|
||||
headers={"Accept": "application/sparql-results+json"}
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
data = response.json()
|
||||
occupations = self._parse_sparql_response(data, language)
|
||||
|
||||
if occupations:
|
||||
expert_cache.set(cache_key, occupations)
|
||||
logger.info(f"Wikidata fetched: {len(occupations)} occupations")
|
||||
|
||||
return self._random_select(occupations, count)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Wikidata query failed: {e}")
|
||||
raise
|
||||
|
||||
def _build_sparql_query(self, language: str) -> str:
|
||||
"""建構 SPARQL 查詢"""
|
||||
lang_filter = f'FILTER(LANG(?occupationLabel) = "{language}")'
|
||||
|
||||
return f"""
|
||||
SELECT DISTINCT ?occupation ?occupationLabel ?fieldLabel WHERE {{
|
||||
?occupation wdt:P31 wd:Q28640.
|
||||
?occupation rdfs:label ?occupationLabel.
|
||||
{lang_filter}
|
||||
|
||||
OPTIONAL {{
|
||||
?occupation wdt:P425 ?field.
|
||||
?field rdfs:label ?fieldLabel.
|
||||
FILTER(LANG(?fieldLabel) = "{language}")
|
||||
}}
|
||||
}}
|
||||
LIMIT 500
|
||||
"""
|
||||
|
||||
def _parse_sparql_response(self, data: dict, language: str) -> List[dict]:
|
||||
"""解析 SPARQL 回應"""
|
||||
results = []
|
||||
bindings = data.get("results", {}).get("bindings", [])
|
||||
|
||||
for item in bindings:
|
||||
name = item.get("occupationLabel", {}).get("value", "")
|
||||
field = item.get("fieldLabel", {}).get("value", "")
|
||||
|
||||
if name and len(name) >= 2:
|
||||
results.append({
|
||||
"name": name,
|
||||
"domain": field if field else self._infer_domain(name)
|
||||
})
|
||||
|
||||
return results
|
||||
|
||||
def _infer_domain(self, occupation_name: str) -> str:
|
||||
"""根據職業名稱推斷領域"""
|
||||
# 簡單的領域推斷規則
|
||||
domain_keywords = {
|
||||
"醫": "醫療健康",
|
||||
"師": "專業服務",
|
||||
"工程": "工程技術",
|
||||
"設計": "設計創意",
|
||||
"藝術": "藝術文化",
|
||||
"運動": "體育運動",
|
||||
"農": "農業",
|
||||
"漁": "漁業",
|
||||
"商": "商業貿易",
|
||||
"法": "法律",
|
||||
"教": "教育",
|
||||
"研究": "學術研究",
|
||||
}
|
||||
|
||||
for keyword, domain in domain_keywords.items():
|
||||
if keyword in occupation_name:
|
||||
return domain
|
||||
|
||||
return "專業領域"
|
||||
|
||||
def _random_select(self, items: List[dict], count: int) -> List[dict]:
|
||||
"""隨機選取指定數量"""
|
||||
if len(items) <= count:
|
||||
return items
|
||||
return random.sample(items, count)
|
||||
|
||||
async def close(self):
|
||||
await self.client.aclose()
|
||||
|
||||
|
||||
class ConceptNetProvider(ExpertSourceProvider):
|
||||
"""ConceptNet API 查詢提供者"""
|
||||
|
||||
ENDPOINT = "https://api.conceptnet.io"
|
||||
|
||||
def __init__(self):
|
||||
self.client = httpx.AsyncClient(timeout=30.0)
|
||||
|
||||
async def fetch_occupations(
|
||||
self, count: int, language: str = "zh"
|
||||
) -> List[dict]:
|
||||
"""從 ConceptNet 獲取職業相關概念"""
|
||||
cache_key = f"conceptnet:{language}:occupations"
|
||||
|
||||
# 檢查快取
|
||||
cached = expert_cache.get(cache_key)
|
||||
if cached:
|
||||
logger.info(f"ConceptNet cache hit: {len(cached)} concepts")
|
||||
return self._random_select(cached, count)
|
||||
|
||||
# 查詢職業相關概念
|
||||
lang_code = "zh" if language == "zh" else "en"
|
||||
start_concept = f"/c/{lang_code}/職業" if lang_code == "zh" else f"/c/{lang_code}/occupation"
|
||||
|
||||
try:
|
||||
occupations = []
|
||||
|
||||
# 查詢 IsA 關係
|
||||
response = await self.client.get(
|
||||
f"{self.ENDPOINT}/query",
|
||||
params={
|
||||
"start": start_concept,
|
||||
"rel": "/r/IsA",
|
||||
"limit": 100
|
||||
}
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
occupations.extend(self._parse_conceptnet_response(data, lang_code))
|
||||
|
||||
# 也查詢 RelatedTo 關係以獲取更多結果
|
||||
response2 = await self.client.get(
|
||||
f"{self.ENDPOINT}/query",
|
||||
params={
|
||||
"node": start_concept,
|
||||
"rel": "/r/RelatedTo",
|
||||
"limit": 100
|
||||
}
|
||||
)
|
||||
response2.raise_for_status()
|
||||
data2 = response2.json()
|
||||
occupations.extend(self._parse_conceptnet_response(data2, lang_code))
|
||||
|
||||
# 去重
|
||||
seen = set()
|
||||
unique_occupations = []
|
||||
for occ in occupations:
|
||||
if occ["name"] not in seen:
|
||||
seen.add(occ["name"])
|
||||
unique_occupations.append(occ)
|
||||
|
||||
if unique_occupations:
|
||||
expert_cache.set(cache_key, unique_occupations)
|
||||
logger.info(f"ConceptNet fetched: {len(unique_occupations)} concepts")
|
||||
|
||||
return self._random_select(unique_occupations, count)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"ConceptNet query failed: {e}")
|
||||
raise
|
||||
|
||||
def _parse_conceptnet_response(self, data: dict, lang_code: str) -> List[dict]:
|
||||
"""解析 ConceptNet 回應"""
|
||||
results = []
|
||||
edges = data.get("edges", [])
|
||||
|
||||
for edge in edges:
|
||||
# 取得 start 或 end 節點(取決於查詢方向)
|
||||
start = edge.get("start", {})
|
||||
end = edge.get("end", {})
|
||||
|
||||
# 選擇非起始節點的概念
|
||||
node = end if start.get("@id", "").endswith("職業") or start.get("@id", "").endswith("occupation") else start
|
||||
|
||||
label = node.get("label", "")
|
||||
term = node.get("term", "")
|
||||
|
||||
# 過濾:確保是目標語言且有意義
|
||||
node_id = node.get("@id", "")
|
||||
if f"/c/{lang_code}/" in node_id and label and len(label) >= 2:
|
||||
results.append({
|
||||
"name": label,
|
||||
"domain": self._infer_domain_from_edge(edge)
|
||||
})
|
||||
|
||||
return results
|
||||
|
||||
def _infer_domain_from_edge(self, edge: dict) -> str:
|
||||
"""從 edge 資訊推斷領域"""
|
||||
# ConceptNet 的 edge 包含 surfaceText 可能有額外資訊
|
||||
surface = edge.get("surfaceText", "")
|
||||
rel = edge.get("rel", {}).get("label", "")
|
||||
|
||||
if "專業" in surface:
|
||||
return "專業領域"
|
||||
elif "技術" in surface:
|
||||
return "技術領域"
|
||||
else:
|
||||
return "知識領域"
|
||||
|
||||
def _random_select(self, items: List[dict], count: int) -> List[dict]:
|
||||
"""隨機選取指定數量"""
|
||||
if len(items) <= count:
|
||||
return items
|
||||
return random.sample(items, count)
|
||||
|
||||
async def close(self):
|
||||
await self.client.aclose()
|
||||
|
||||
|
||||
class ExpertSourceService:
|
||||
"""統一的專家來源服務"""
|
||||
|
||||
def __init__(self):
|
||||
self.wikidata = WikidataProvider()
|
||||
self.conceptnet = ConceptNetProvider()
|
||||
|
||||
async def get_experts(
|
||||
self,
|
||||
source: str,
|
||||
count: int,
|
||||
language: str = "zh",
|
||||
fallback_to_llm: bool = True
|
||||
) -> Tuple[List[dict], str]:
|
||||
"""
|
||||
從指定來源獲取專家資料
|
||||
|
||||
Args:
|
||||
source: 來源類型 ("wikidata" | "conceptnet")
|
||||
count: 需要的專家數量
|
||||
language: 語言代碼
|
||||
fallback_to_llm: 失敗時是否允許 fallback(由呼叫者處理)
|
||||
|
||||
Returns:
|
||||
(專家資料列表, 實際使用的來源)
|
||||
|
||||
Raises:
|
||||
Exception: 當獲取失敗且不 fallback 時
|
||||
"""
|
||||
provider = self._get_provider(source)
|
||||
|
||||
try:
|
||||
experts = await provider.fetch_occupations(count, language)
|
||||
|
||||
if not experts:
|
||||
raise ValueError(f"No occupations found from {source}")
|
||||
|
||||
return experts, source
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch from {source}: {e}")
|
||||
raise
|
||||
|
||||
def _get_provider(self, source: str) -> ExpertSourceProvider:
|
||||
"""根據來源類型取得對應的 provider"""
|
||||
if source == "wikidata":
|
||||
return self.wikidata
|
||||
elif source == "conceptnet":
|
||||
return self.conceptnet
|
||||
else:
|
||||
raise ValueError(f"Unknown source: {source}")
|
||||
|
||||
async def close(self):
|
||||
"""關閉所有 HTTP clients"""
|
||||
await self.wikidata.close()
|
||||
await self.conceptnet.close()
|
||||
|
||||
|
||||
# 全域服務實例
|
||||
expert_source_service = ExpertSourceService()
|
||||
@@ -230,6 +230,8 @@ export interface ExpertTransformationDAGResult {
|
||||
results: ExpertTransformationCategoryResult[];
|
||||
}
|
||||
|
||||
export type ExpertSource = 'llm' | 'wikidata' | 'conceptnet';
|
||||
|
||||
export interface ExpertTransformationRequest {
|
||||
query: string;
|
||||
category: string;
|
||||
@@ -237,6 +239,8 @@ export interface ExpertTransformationRequest {
|
||||
expert_count: number; // 2-8
|
||||
keywords_per_expert: number; // 1-3
|
||||
custom_experts?: string[]; // ["藥師", "工程師"]
|
||||
expert_source?: ExpertSource; // 專家來源 (default: 'llm')
|
||||
expert_language?: string; // 外部來源語言 (default: 'zh')
|
||||
model?: string;
|
||||
temperature?: number;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user