feat: Add external expert sources (Wikidata SPARQL + ConceptNet API)

- Add expert_cache.py: TTL-based in-memory cache (1 hour default)
- Add expert_source_service.py: WikidataProvider and ConceptNetProvider
  - Wikidata SPARQL queries for occupations with Chinese labels
  - ConceptNet API queries for occupation-related concepts
  - Random selection from cached pool
- Update schemas.py: Add ExpertSource enum (llm/wikidata/conceptnet)
- Update ExpertTransformationRequest with expert_source and expert_language
- Update router: Conditionally use external sources with LLM fallback
  - New SSE events: expert_source, expert_fallback
- Update frontend types with ExpertSource

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-12-04 11:42:48 +08:00
parent baea210109
commit 43785db595
5 changed files with 524 additions and 22 deletions

View File

@@ -13,6 +13,7 @@ from ..models.schemas import (
ExpertKeyword,
ExpertTransformationCategoryResult,
ExpertTransformationDescription,
ExpertSource,
)
from ..prompts.expert_transformation_prompt import (
get_expert_generation_prompt,
@@ -20,6 +21,7 @@ from ..prompts.expert_transformation_prompt import (
get_single_description_prompt,
)
from ..services.llm_service import ollama_provider, extract_json_from_response
from ..services.expert_source_service import expert_source_service
logger = logging.getLogger(__name__)
router = APIRouter(prefix="/api/expert-transformation", tags=["expert-transformation"])
@@ -35,36 +37,98 @@ async def generate_expert_transformation_events(
model = request.model
# ========== Step 0: Generate expert team ==========
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...'}, ensure_ascii=False)}\n\n"
yield f"event: expert_start\ndata: {json.dumps({'message': '正在組建專家團隊...', 'source': request.expert_source.value}, ensure_ascii=False)}\n\n"
experts: List[ExpertProfile] = []
actual_source = request.expert_source.value
try:
expert_prompt = get_expert_generation_prompt(
query=request.query,
categories=all_categories,
expert_count=request.expert_count,
custom_experts=request.custom_experts
)
logger.info(f"Expert prompt: {expert_prompt[:200]}")
# 決定使用哪種來源生成專家
use_llm = (
request.expert_source == ExpertSource.LLM or
request.custom_experts # 有自訂專家時,使用 LLM 補充
)
expert_response = await ollama_provider.generate(
expert_prompt, model=model, temperature=temperature
)
logger.info(f"Expert response: {expert_response[:500]}")
if use_llm:
# LLM 生成專家
try:
expert_prompt = get_expert_generation_prompt(
query=request.query,
categories=all_categories,
expert_count=request.expert_count,
custom_experts=request.custom_experts
)
logger.info(f"Expert prompt: {expert_prompt[:200]}")
expert_data = extract_json_from_response(expert_response)
experts_raw = expert_data.get("experts", [])
expert_response = await ollama_provider.generate(
expert_prompt, model=model, temperature=temperature
)
logger.info(f"Expert response: {expert_response[:500]}")
for exp in experts_raw:
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
experts.append(ExpertProfile(**exp))
expert_data = extract_json_from_response(expert_response)
experts_raw = expert_data.get("experts", [])
except Exception as e:
logger.error(f"Failed to generate experts: {e}")
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n"
return
for exp in experts_raw:
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
experts.append(ExpertProfile(**exp))
actual_source = "llm"
except Exception as e:
logger.error(f"Failed to generate experts via LLM: {e}")
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(e)}'}, ensure_ascii=False)}\n\n"
return
else:
# 外部來源生成專家
try:
experts_data, actual_source = await expert_source_service.get_experts(
source=request.expert_source.value,
count=request.expert_count,
language=request.expert_language
)
for i, exp_data in enumerate(experts_data):
experts.append(ExpertProfile(
id=f"expert-{i}",
name=exp_data["name"],
domain=exp_data["domain"],
perspective=f"{exp_data['domain']}角度思考"
))
logger.info(f"Generated {len(experts)} experts from {actual_source}")
except Exception as e:
# 外部來源失敗fallback 到 LLM
logger.warning(f"External source failed: {e}, falling back to LLM")
yield f"event: expert_fallback\ndata: {json.dumps({'original': request.expert_source.value, 'fallback': 'llm', 'reason': str(e)}, ensure_ascii=False)}\n\n"
try:
expert_prompt = get_expert_generation_prompt(
query=request.query,
categories=all_categories,
expert_count=request.expert_count,
custom_experts=request.custom_experts
)
expert_response = await ollama_provider.generate(
expert_prompt, model=model, temperature=temperature
)
expert_data = extract_json_from_response(expert_response)
experts_raw = expert_data.get("experts", [])
for exp in experts_raw:
if isinstance(exp, dict) and all(k in exp for k in ["id", "name", "domain"]):
experts.append(ExpertProfile(**exp))
actual_source = "llm"
except Exception as llm_error:
logger.error(f"LLM fallback also failed: {llm_error}")
yield f"event: error\ndata: {json.dumps({'error': f'專家團隊生成失敗: {str(llm_error)}'}, ensure_ascii=False)}\n\n"
return
# 回報來源資訊
yield f"event: expert_source\ndata: {json.dumps({'source': actual_source}, ensure_ascii=False)}\n\n"
yield f"event: expert_complete\ndata: {json.dumps({'experts': [e.model_dump() for e in experts]}, ensure_ascii=False)}\n\n"
if not experts: