feat: Migrate to React Flow and add Fixed + Dynamic category mode

Frontend:
- Migrate MindmapDAG from D3.js to React Flow (@xyflow/react)
- Add custom node components (QueryNode, CategoryHeaderNode, AttributeNode)
- Add useDAGLayout hook for column-based layout
- Add "AI" badge for LLM-suggested categories
- Update CategorySelector with Fixed + Dynamic mode option
- Improve dark/light theme support

Backend:
- Add FIXED_PLUS_DYNAMIC category mode
- Filter duplicate category names in LLM suggestions
- Update prompts to exclude fixed categories when suggesting new ones
- Improve LLM service with better error handling and logging
- Auto-remove /no_think prefix for non-Qwen models
- Add smart JSON format detection for model compatibility
- Improve JSON extraction with multiple parsing strategies

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-12-03 01:22:57 +08:00
parent 91f7f41bc1
commit 1ed1dab78f
21 changed files with 1254 additions and 614 deletions

View File

@@ -73,6 +73,7 @@ class CategoryMode(str, Enum):
"""類別模式"""
FIXED_ONLY = "fixed_only"
FIXED_PLUS_CUSTOM = "fixed_plus_custom"
FIXED_PLUS_DYNAMIC = "fixed_plus_dynamic" # Fixed + LLM suggested
CUSTOM_ONLY = "custom_only"
DYNAMIC_AUTO = "dynamic_auto"
@@ -98,3 +99,35 @@ class DynamicStep1Result(BaseModel):
class DynamicCausalChain(BaseModel):
"""動態版本的因果鏈"""
chain: Dict[str, str] # {類別名: 選中屬性}
# ===== DAG (Directed Acyclic Graph) schemas =====
class DAGNode(BaseModel):
"""DAG 節點 - 每個屬性只出現一次"""
id: str # 唯一 ID: "{category}_{index}"
name: str # 顯示名稱
category: str # 所屬類別
order: int # 欄位內位置
class DAGEdge(BaseModel):
"""DAG 邊 - 節點之間的連接"""
source_id: str
target_id: str
class AttributeDAG(BaseModel):
"""完整 DAG 結構"""
query: str
categories: List[CategoryDefinition]
nodes: List[DAGNode]
edges: List[DAGEdge]
class DAGRelationship(BaseModel):
"""Step 2 輸出 - 單一關係"""
source_category: str
source: str # source attribute name
target_category: str
target: str # target attribute name

View File

@@ -120,17 +120,26 @@ def get_flat_attribute_prompt(query: str, categories: Optional[List[str]] = None
# ===== Dynamic category system prompts =====
def get_step0_category_analysis_prompt(query: str, suggested_count: int = 3) -> str:
def get_step0_category_analysis_prompt(
query: str,
suggested_count: int = 3,
exclude_categories: List[str] | None = None
) -> str:
"""Step 0: LLM 分析建議類別"""
exclude_text = ""
if exclude_categories:
exclude_text = f"\n【禁止使用的類別】{', '.join(exclude_categories)}(這些已經是固定類別,不要重複建議)\n"
return f"""/no_think
分析「{query}」,建議 {suggested_count} 個最適合的屬性類別來描述它。
【常見類別參考】材料、功能、用途、使用族群、特性、形狀、顏色、尺寸、品牌、價格區間
【常見類別參考】特性、形狀、顏色、尺寸、品牌、價格區間、重量、風格、場合、季節、技術規格
{exclude_text}
【重要】
1. 選擇最能描述此物件本質的類別
2. 類別之間應該有邏輯關係(如:材料→功能→用途)
2. 類別之間應該有邏輯關係
3. 不要選擇過於抽象或重複的類別
4. 必須建議與參考列表不同的、有創意的類別
只回傳 JSON
{{
@@ -213,3 +222,47 @@ def get_step2_dynamic_causal_chain_prompt(
只回傳 JSON
{json.dumps(json_template, ensure_ascii=False, indent=2)}"""
# ===== DAG relationship prompt =====
def get_step2_dag_relationships_prompt(
query: str,
categories: List, # List[CategoryDefinition]
attributes_by_category: Dict[str, List[str]],
) -> str:
"""生成相鄰類別之間的自然關係"""
sorted_cats = sorted(categories, key=lambda x: x.order if hasattr(x, 'order') else x.get('order', 0))
# Build attribute listing
attr_listing = "\n".join([
f"{cat.name if hasattr(cat, 'name') else cat['name']}{', '.join(attributes_by_category.get(cat.name if hasattr(cat, 'name') else cat['name'], []))}"
for cat in sorted_cats
])
# Build direction hints
direction_hints = "".join([cat.name if hasattr(cat, 'name') else cat['name'] for cat in sorted_cats])
return f"""/no_think
分析「{query}」的屬性關係。
{attr_listing}
【關係方向】{direction_hints}
【規則】
1. 只建立相鄰類別之間的關係(例如:材料→功能,功能→用途)
2. 只輸出真正有因果或關聯關係的配對
3. 一個屬性可連接多個下游屬性,也可以不連接任何屬性
4. 不需要每個屬性都有連接
5. 關係應該合理且有意義
回傳 JSON
{{
"relationships": [
{{"source_category": "類別A", "source": "屬性名", "target_category": "類別B", "target": "屬性名"}},
...
]
}}
只回傳 JSON。"""

View File

@@ -16,6 +16,10 @@ from ..models.schemas import (
Step0Result,
DynamicStep1Result,
DynamicCausalChain,
DAGNode,
DAGEdge,
AttributeDAG,
DAGRelationship,
)
from ..prompts.attribute_prompt import (
get_step1_attributes_prompt,
@@ -23,6 +27,7 @@ from ..prompts.attribute_prompt import (
get_step0_category_analysis_prompt,
get_step1_dynamic_attributes_prompt,
get_step2_dynamic_causal_chain_prompt,
get_step2_dag_relationships_prompt,
)
from ..services.llm_service import ollama_provider, extract_json_from_response
@@ -39,14 +44,21 @@ FIXED_CATEGORIES = [
]
async def execute_step0(request: StreamAnalyzeRequest) -> Step0Result | None:
"""Execute Step 0 - LLM category analysis"""
if request.category_mode == CategoryMode.FIXED_ONLY:
return None
async def execute_step0(
request: StreamAnalyzeRequest,
exclude_categories: List[str] | None = None
) -> Step0Result | None:
"""Execute Step 0 - LLM category analysis
Called only for modes that need LLM to suggest categories:
- FIXED_PLUS_DYNAMIC
- CUSTOM_ONLY
- DYNAMIC_AUTO
"""
prompt = get_step0_category_analysis_prompt(
request.query,
request.suggested_category_count
request.suggested_category_count,
exclude_categories=exclude_categories
)
temperature = request.temperature if request.temperature is not None else 0.7
response = await ollama_provider.generate(
@@ -83,6 +95,34 @@ def resolve_final_categories(
)
return categories
elif request.category_mode == CategoryMode.FIXED_PLUS_DYNAMIC:
# Fixed categories + LLM suggested categories
categories = [
CategoryDefinition(
name=cat.name,
description=cat.description,
is_fixed=True,
order=i
)
for i, cat in enumerate(FIXED_CATEGORIES)
]
if step0_result:
# Filter out LLM categories that duplicate fixed category names
fixed_names = {cat.name for cat in FIXED_CATEGORIES}
added_count = 0
for cat in step0_result.categories:
if cat.name not in fixed_names:
categories.append(
CategoryDefinition(
name=cat.name,
description=cat.description,
is_fixed=False,
order=len(FIXED_CATEGORIES) + added_count
)
)
added_count += 1
return categories
elif request.category_mode == CategoryMode.CUSTOM_ONLY:
return step0_result.categories if step0_result else FIXED_CATEGORIES
@@ -192,17 +232,73 @@ def assemble_attribute_tree(query: str, chains: List[CausalChain]) -> AttributeN
return root
def build_dag_from_relationships(
query: str,
categories: List[CategoryDefinition],
attributes_by_category: dict,
relationships: List[DAGRelationship],
) -> AttributeDAG:
"""從屬性和關係建構 DAG"""
sorted_cats = sorted(categories, key=lambda x: x.order)
# 建立節點 - 每個屬性只出現一次
nodes: List[DAGNode] = []
node_id_map: dict = {} # (category, name) -> id
for cat in sorted_cats:
cat_name = cat.name
for idx, attr_name in enumerate(attributes_by_category.get(cat_name, [])):
node_id = f"{cat_name}_{idx}"
nodes.append(DAGNode(
id=node_id,
name=attr_name,
category=cat_name,
order=idx
))
node_id_map[(cat_name, attr_name)] = node_id
# 建立邊
edges: List[DAGEdge] = []
for rel in relationships:
source_key = (rel.source_category, rel.source)
target_key = (rel.target_category, rel.target)
if source_key in node_id_map and target_key in node_id_map:
edges.append(DAGEdge(
source_id=node_id_map[source_key],
target_id=node_id_map[target_key]
))
return AttributeDAG(
query=query,
categories=sorted_cats,
nodes=nodes,
edges=edges
)
async def generate_sse_events(request: StreamAnalyzeRequest) -> AsyncGenerator[str, None]:
"""Generate SSE events with dynamic category support"""
try:
temperature = request.temperature if request.temperature is not None else 0.7
# ========== Step 0: Category Analysis (if needed) ==========
# Only these modes need LLM category analysis
needs_step0 = request.category_mode in [
CategoryMode.FIXED_PLUS_DYNAMIC,
CategoryMode.CUSTOM_ONLY,
CategoryMode.DYNAMIC_AUTO,
]
step0_result = None
if request.category_mode != CategoryMode.FIXED_ONLY:
if needs_step0:
yield f"event: step0_start\ndata: {json.dumps({'message': '分析類別...'}, ensure_ascii=False)}\n\n"
step0_result = await execute_step0(request)
# For FIXED_PLUS_DYNAMIC, exclude the fixed category names
exclude_cats = None
if request.category_mode == CategoryMode.FIXED_PLUS_DYNAMIC:
exclude_cats = [cat.name for cat in FIXED_CATEGORIES]
step0_result = await execute_step0(request, exclude_categories=exclude_cats)
if step0_result:
yield f"event: step0_complete\ndata: {json.dumps({'result': step0_result.model_dump()}, ensure_ascii=False)}\n\n"
@@ -227,58 +323,58 @@ async def generate_sse_events(request: StreamAnalyzeRequest) -> AsyncGenerator[s
yield f"event: step1_complete\ndata: {json.dumps({'result': step1_result.model_dump()}, ensure_ascii=False)}\n\n"
# ========== Step 2: Generate Causal Chains (Dynamic) ==========
causal_chains: List[DynamicCausalChain] = []
# ========== Step 2: Generate Relationships (DAG) ==========
yield f"event: relationships_start\ndata: {json.dumps({'message': '生成關係...'}, ensure_ascii=False)}\n\n"
for i in range(request.chain_count):
chain_index = i + 1
yield f"event: chain_start\ndata: {json.dumps({'index': chain_index, 'total': request.chain_count, 'message': f'正在生成第 {chain_index}/{request.chain_count} 條因果鏈...'}, ensure_ascii=False)}\n\n"
step2_prompt = get_step2_dynamic_causal_chain_prompt(
step2_prompt = get_step2_dag_relationships_prompt(
query=request.query,
categories=final_categories,
attributes_by_category=step1_result.attributes,
existing_chains=[c.chain for c in causal_chains],
chain_index=chain_index,
)
logger.info(f"Step 2 (relationships) prompt: {step2_prompt[:300]}")
# Gradually increase temperature for diversity
chain_temperature = min(temperature + 0.05 * i, 1.0)
relationships: List[DAGRelationship] = []
max_retries = 2
chain = None
for attempt in range(max_retries):
try:
step2_response = await ollama_provider.generate(
step2_prompt, model=request.model, temperature=chain_temperature
step2_prompt, model=request.model, temperature=temperature
)
logger.info(f"Chain {chain_index} response: {step2_response[:300]}")
logger.info(f"Relationships response: {step2_response[:500]}")
chain_data = extract_json_from_response(step2_response)
chain = DynamicCausalChain(chain=chain_data)
rel_data = extract_json_from_response(step2_response)
raw_relationships = rel_data.get("relationships", [])
for rel in raw_relationships:
relationships.append(DAGRelationship(
source_category=rel.get("source_category", ""),
source=rel.get("source", ""),
target_category=rel.get("target_category", ""),
target=rel.get("target", ""),
))
break
except Exception as e:
logger.warning(f"Chain {chain_index} attempt {attempt + 1} failed: {e}")
logger.warning(f"Relationships attempt {attempt + 1} failed: {e}")
if attempt < max_retries - 1:
chain_temperature = min(chain_temperature + 0.1, 1.0)
temperature = min(temperature + 0.1, 1.0)
if chain:
causal_chains.append(chain)
yield f"event: chain_complete\ndata: {json.dumps({'index': chain_index, 'chain': chain.model_dump()}, ensure_ascii=False)}\n\n"
else:
yield f"event: chain_error\ndata: {json.dumps({'index': chain_index, 'error': f'生成失敗'}, ensure_ascii=False)}\n\n"
yield f"event: relationships_complete\ndata: {json.dumps({'count': len(relationships)}, ensure_ascii=False)}\n\n"
# ========== Assemble Final Tree (Dynamic) ==========
final_tree = assemble_dynamic_attribute_tree(request.query, causal_chains, final_categories)
# ========== Build DAG ==========
dag = build_dag_from_relationships(
query=request.query,
categories=final_categories,
attributes_by_category=step1_result.attributes,
relationships=relationships,
)
final_result = {
"query": request.query,
"step0_result": step0_result.model_dump() if step0_result else None,
"categories_used": [c.model_dump() for c in final_categories],
"step1_result": step1_result.model_dump(),
"causal_chains": [c.model_dump() for c in causal_chains],
"attributes": final_tree.model_dump(),
"relationships": [r.model_dump() for r in relationships],
"dag": dag.model_dump(),
}
yield f"event: done\ndata: {json.dumps(final_result, ensure_ascii=False)}\n\n"

View File

@@ -1,4 +1,5 @@
import json
import logging
import re
from abc import ABC, abstractmethod
from typing import List, Optional
@@ -8,6 +9,8 @@ import httpx
from ..config import settings
from ..models.schemas import AttributeNode
logger = logging.getLogger(__name__)
class LLMProvider(ABC):
@abstractmethod
@@ -35,34 +38,56 @@ class OllamaProvider(LLMProvider):
model = model or settings.default_model
url = f"{self.base_url}/api/generate"
# Remove /no_think prefix for non-qwen models (it's qwen-specific)
clean_prompt = prompt
if not model.lower().startswith("qwen") and prompt.startswith("/no_think"):
clean_prompt = prompt.replace("/no_think\n", "").replace("/no_think", "")
logger.info(f"Removed /no_think prefix for model {model}")
# Models known to support JSON format well
json_capable_models = ["qwen", "llama", "mistral", "gemma", "phi"]
model_lower = model.lower()
use_json_format = any(m in model_lower for m in json_capable_models)
payload = {
"model": model,
"prompt": prompt,
"prompt": clean_prompt,
"stream": False,
"format": "json",
"options": {
"temperature": temperature,
},
}
# Only use format: json for models that support it
if use_json_format:
payload["format"] = "json"
else:
logger.info(f"Model {model} may not support JSON format, requesting without format constraint")
# Retry logic for larger models that may return empty responses
max_retries = 3
for attempt in range(max_retries):
logger.info(f"LLM request attempt {attempt + 1}/{max_retries} to model {model}")
response = await self.client.post(url, json=payload)
response.raise_for_status()
result = response.json()
response_text = result.get("response", "")
logger.info(f"LLM response (first 500 chars): {response_text[:500] if response_text else '(empty)'}")
# Check if response is valid (not empty or just "{}")
if response_text and response_text.strip() not in ["", "{}", "{ }"]:
return response_text
logger.warning(f"Empty or invalid response on attempt {attempt + 1}, retrying...")
# If empty, retry with slightly higher temperature
if attempt < max_retries - 1:
payload["options"]["temperature"] = min(temperature + 0.1 * (attempt + 1), 1.0)
# Return whatever we got on last attempt
logger.error(f"All {max_retries} attempts returned empty response from model {model}")
return response_text
async def list_models(self) -> List[str]:
@@ -124,21 +149,46 @@ class OpenAICompatibleProvider(LLMProvider):
def extract_json_from_response(response: str) -> dict:
"""Extract JSON from LLM response, handling markdown code blocks and extra whitespace."""
# Remove markdown code blocks if present
json_match = re.search(r"```(?:json)?\s*([\s\S]*?)```", response)
if json_match:
json_str = json_match.group(1)
else:
if not response or not response.strip():
logger.error("LLM returned empty response")
raise ValueError("LLM returned empty response - the model may not support JSON format or the prompt was unclear")
json_str = response
# Clean up: remove extra whitespace, normalize spaces
json_str = json_str.strip()
# Remove trailing whitespace before closing braces/brackets
json_str = re.sub(r'\s+([}\]])', r'\1', json_str)
# Remove multiple spaces/tabs/newlines
json_str = re.sub(r'[\t\n\r]+', ' ', json_str)
# Try multiple extraction strategies
extraction_attempts = []
return json.loads(json_str)
# Strategy 1: Look for markdown code blocks
json_match = re.search(r"```(?:json)?\s*([\s\S]*?)```", response)
if json_match:
extraction_attempts.append(json_match.group(1))
# Strategy 2: Look for JSON object pattern { ... }
json_obj_match = re.search(r'(\{[\s\S]*\})', response)
if json_obj_match:
extraction_attempts.append(json_obj_match.group(1))
# Strategy 3: Original response
extraction_attempts.append(response)
# Try each extraction attempt
for attempt_str in extraction_attempts:
# Clean up: remove extra whitespace, normalize spaces
cleaned = attempt_str.strip()
# Remove trailing whitespace before closing braces/brackets
cleaned = re.sub(r'\s+([}\]])', r'\1', cleaned)
# Normalize newlines but keep structure
cleaned = re.sub(r'[\t\r]+', ' ', cleaned)
try:
return json.loads(cleaned)
except json.JSONDecodeError:
continue
# All attempts failed
logger.error(f"Failed to parse JSON from response")
logger.error(f"Raw response: {response[:1000]}")
raise ValueError(f"Failed to parse LLM response as JSON. The model may not support structured output. Raw response: {response[:300]}...")
def parse_attribute_response(response: str) -> AttributeNode:

View File

@@ -10,6 +10,7 @@
"dependencies": {
"@ant-design/icons": "^6.1.0",
"@types/d3": "^7.4.3",
"@xyflow/react": "^12.9.3",
"antd": "^6.0.0",
"d3": "^7.9.0",
"react": "^19.2.0",
@@ -2454,7 +2455,7 @@
"version": "19.2.7",
"resolved": "https://registry.npmjs.org/@types/react/-/react-19.2.7.tgz",
"integrity": "sha512-MWtvHrGZLFttgeEj28VXHxpmwYbor/ATPYbBfSFZEIRK0ecCFLl2Qo55z52Hss+UV9CRN7trSeq1zbgx7YDWWg==",
"dev": true,
"devOptional": true,
"license": "MIT",
"peer": true,
"dependencies": {
@@ -2763,6 +2764,38 @@
"vite": "^4.2.0 || ^5.0.0 || ^6.0.0 || ^7.0.0"
}
},
"node_modules/@xyflow/react": {
"version": "12.9.3",
"resolved": "https://registry.npmjs.org/@xyflow/react/-/react-12.9.3.tgz",
"integrity": "sha512-PSWoJ8vHiEqSIkLIkge+0eiHWiw4C6dyFDA03VKWJkqbU4A13VlDIVwKqf/Znuysn2GQw/zA61zpHE4rGgax7Q==",
"license": "MIT",
"dependencies": {
"@xyflow/system": "0.0.73",
"classcat": "^5.0.3",
"zustand": "^4.4.0"
},
"peerDependencies": {
"react": ">=17",
"react-dom": ">=17"
}
},
"node_modules/@xyflow/system": {
"version": "0.0.73",
"resolved": "https://registry.npmjs.org/@xyflow/system/-/system-0.0.73.tgz",
"integrity": "sha512-C2ymH2V4mYDkdVSiRx0D7R0s3dvfXiupVBcko6tXP5K4tVdSBMo22/e3V9yRNdn+2HQFv44RFKzwOyCcUUDAVQ==",
"license": "MIT",
"dependencies": {
"@types/d3-drag": "^3.0.7",
"@types/d3-interpolate": "^3.0.4",
"@types/d3-selection": "^3.0.10",
"@types/d3-transition": "^3.0.8",
"@types/d3-zoom": "^3.0.8",
"d3-drag": "^3.0.0",
"d3-interpolate": "^3.0.1",
"d3-selection": "^3.0.0",
"d3-zoom": "^3.0.0"
}
},
"node_modules/acorn": {
"version": "8.15.0",
"resolved": "https://registry.npmjs.org/acorn/-/acorn-8.15.0.tgz",
@@ -3001,6 +3034,12 @@
"url": "https://github.com/chalk/chalk?sponsor=1"
}
},
"node_modules/classcat": {
"version": "5.0.5",
"resolved": "https://registry.npmjs.org/classcat/-/classcat-5.0.5.tgz",
"integrity": "sha512-JhZUT7JFcQy/EzW605k/ktHtncoo9vnyW/2GspNYwFlN1C/WmjuV/xtS04e9SOkL2sTdw0VAZ2UGCcQ9lR6p6w==",
"license": "MIT"
},
"node_modules/classnames": {
"version": "2.5.1",
"resolved": "https://registry.npmjs.org/classnames/-/classnames-2.5.1.tgz",
@@ -4809,6 +4848,15 @@
"punycode": "^2.1.0"
}
},
"node_modules/use-sync-external-store": {
"version": "1.6.0",
"resolved": "https://registry.npmjs.org/use-sync-external-store/-/use-sync-external-store-1.6.0.tgz",
"integrity": "sha512-Pp6GSwGP/NrPIrxVFAIkOQeyw8lFenOHijQWkUTrDvrF4ALqylP2C/KCkeS9dpUM3KvYRQhna5vt7IL95+ZQ9w==",
"license": "MIT",
"peerDependencies": {
"react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0"
}
},
"node_modules/vite": {
"version": "7.2.6",
"resolved": "https://registry.npmjs.org/vite/-/vite-7.2.6.tgz",
@@ -4954,6 +5002,34 @@
"peerDependencies": {
"zod": "^3.25.0 || ^4.0.0"
}
},
"node_modules/zustand": {
"version": "4.5.7",
"resolved": "https://registry.npmjs.org/zustand/-/zustand-4.5.7.tgz",
"integrity": "sha512-CHOUy7mu3lbD6o6LJLfllpjkzhHXSBlX8B9+qPddUsIfeF5S/UZ5q0kmCsnRqT1UHFQZchNFDDzMbQsuesHWlw==",
"license": "MIT",
"dependencies": {
"use-sync-external-store": "^1.2.2"
},
"engines": {
"node": ">=12.7.0"
},
"peerDependencies": {
"@types/react": ">=16.8",
"immer": ">=9.0.6",
"react": ">=16.8"
},
"peerDependenciesMeta": {
"@types/react": {
"optional": true
},
"immer": {
"optional": true
},
"react": {
"optional": true
}
}
}
}
}

View File

@@ -12,6 +12,7 @@
"dependencies": {
"@ant-design/icons": "^6.1.0",
"@types/d3": "^7.4.3",
"@xyflow/react": "^12.9.3",
"antd": "^6.0.0",
"d3": "^7.9.0",
"react": "^19.2.0",

View File

@@ -1,10 +1,11 @@
import { useState, useRef, useCallback } from 'react';
import { ConfigProvider, Layout, theme, Typography } from 'antd';
import { ConfigProvider, Layout, theme, Typography, Space } from 'antd';
import { ApartmentOutlined } from '@ant-design/icons';
import { ThemeToggle } from './components/ThemeToggle';
import { InputPanel } from './components/InputPanel';
import { MindmapPanel } from './components/MindmapPanel';
import { useAttribute } from './hooks/useAttribute';
import type { MindmapD3Ref } from './components/MindmapD3';
import type { MindmapDAGRef } from './components/MindmapDAG';
import type { CategoryMode } from './types';
const { Header, Sider, Content } = Layout;
@@ -22,7 +23,7 @@ function App() {
nodeSpacing: 32,
fontSize: 14,
});
const mindmapRef = useRef<MindmapD3Ref>(null);
const mindmapRef = useRef<MindmapDAGRef>(null);
const handleAnalyze = async (
query: string,
@@ -36,12 +37,8 @@ function App() {
await analyze(query, model, temperature, chainCount, categoryMode, customCategories, suggestedCategoryCount);
};
const handleExpandAll = useCallback(() => {
mindmapRef.current?.expandAll();
}, []);
const handleCollapseAll = useCallback(() => {
mindmapRef.current?.collapseAll();
const handleResetView = useCallback(() => {
mindmapRef.current?.resetView();
}, []);
return (
@@ -57,11 +54,37 @@ function App() {
alignItems: 'center',
justifyContent: 'space-between',
padding: '0 24px',
background: isDark
? 'linear-gradient(90deg, #141414 0%, #1f1f1f 50%, #141414 100%)'
: 'linear-gradient(90deg, #fff 0%, #fafafa 50%, #fff 100%)',
borderBottom: isDark ? '1px solid #303030' : '1px solid #f0f0f0',
boxShadow: isDark
? '0 2px 8px rgba(0, 0, 0, 0.3)'
: '0 2px 8px rgba(0, 0, 0, 0.06)',
}}
>
<Space align="center" size="middle">
<ApartmentOutlined
style={{
fontSize: 24,
color: isDark ? '#177ddc' : '#1890ff',
}}
/>
<Title
level={4}
style={{
margin: 0,
background: isDark
? 'linear-gradient(90deg, #177ddc 0%, #69c0ff 100%)'
: 'linear-gradient(90deg, #1890ff 0%, #40a9ff 100%)',
WebkitBackgroundClip: 'text',
WebkitTextFillColor: 'transparent',
backgroundClip: 'text',
}}
>
<Title level={4} style={{ margin: 0, color: isDark ? '#fff' : '#000' }}>
Attribute Agent
</Title>
</Space>
<ThemeToggle isDark={isDark} onToggle={setIsDark} />
</Header>
<Layout>
@@ -96,8 +119,7 @@ function App() {
currentResult={currentResult}
onAnalyze={handleAnalyze}
onLoadHistory={loadFromHistory}
onExpandAll={handleExpandAll}
onCollapseAll={handleCollapseAll}
onResetView={handleResetView}
visualSettings={visualSettings}
onVisualSettingsChange={setVisualSettings}
/>

View File

@@ -42,28 +42,37 @@ export function CategorySelector({
Fixed (使)
</Radio>
<Radio value="fixed_plus_custom">
Fixed + Custom
Fixed + Custom ()
</Radio>
<Radio value="fixed_plus_dynamic">
Fixed + Dynamic (LLM )
</Radio>
<Radio value="custom_only">
Custom Only (LLM suggests)
Custom Only (LLM )
</Radio>
<Radio value="dynamic_auto">
Dynamic (LLM suggests, editable)
Dynamic (LLM , )
</Radio>
</Space>
</Radio.Group>
{/* 動態模式:類別數量調整 */}
{(mode === 'custom_only' || mode === 'dynamic_auto') && (
{(mode === 'custom_only' || mode === 'dynamic_auto' || mode === 'fixed_plus_dynamic') && (
<div>
<Text>Suggested Category Count: {suggestedCount}</Text>
<Text>
{mode === 'fixed_plus_dynamic'
? `額外建議類別數: ${suggestedCount}`
: `Suggested Category Count: ${suggestedCount}`}
</Text>
<Slider
min={2}
max={8}
min={1}
max={mode === 'fixed_plus_dynamic' ? 4 : 8}
step={1}
value={suggestedCount}
onChange={onSuggestedCountChange}
marks={{ 2: '2', 3: '3', 5: '5', 8: '8' }}
marks={mode === 'fixed_plus_dynamic'
? { 1: '1', 2: '2', 3: '3', 4: '4' }
: { 2: '2', 3: '3', 5: '5', 8: '8' }}
disabled={disabled}
/>
</div>
@@ -120,7 +129,7 @@ export function CategorySelector({
)}
{/* Step 0 結果顯示 */}
{step0Result && (mode === 'custom_only' || mode === 'dynamic_auto') && (
{step0Result && (mode === 'custom_only' || mode === 'dynamic_auto' || mode === 'fixed_plus_dynamic') && (
<div style={{ marginTop: 8, padding: 12, background: 'rgba(0,0,0,0.04)', borderRadius: 4 }}>
<Text strong>LLM Suggested:</Text>
<div style={{ marginTop: 8 }}>

View File

@@ -11,23 +11,36 @@ import {
Divider,
Collapse,
Progress,
Tag,
Card,
Alert,
} from 'antd';
import {
SearchOutlined,
HistoryOutlined,
DownloadOutlined,
ExpandAltOutlined,
ShrinkOutlined,
ReloadOutlined,
LoadingOutlined,
CheckCircleOutlined,
FileImageOutlined,
FileTextOutlined,
CodeOutlined,
} from '@ant-design/icons';
import type { HistoryItem, AttributeNode, StreamProgress, CategoryMode, DynamicCausalChain, CausalChain } from '../types';
import type { AttributeDAG, CategoryMode } from '../types';
import { getModels } from '../services/api';
import { CategorySelector } from './CategorySelector';
interface DAGProgress {
step: 'idle' | 'step0' | 'step1' | 'relationships' | 'done' | 'error';
message: string;
error?: string;
}
interface DAGHistoryItem {
query: string;
result: AttributeDAG;
timestamp: Date;
}
const { TextArea } = Input;
const { Text } = Typography;
const { Text, Title } = Typography;
interface VisualSettings {
nodeSpacing: number;
@@ -36,9 +49,9 @@ interface VisualSettings {
interface InputPanelProps {
loading: boolean;
progress: StreamProgress;
history: HistoryItem[];
currentResult: AttributeNode | null;
progress: DAGProgress;
history: DAGHistoryItem[];
currentResult: AttributeDAG | null;
onAnalyze: (
query: string,
model?: string,
@@ -48,9 +61,8 @@ interface InputPanelProps {
customCategories?: string[],
suggestedCategoryCount?: number
) => Promise<void>;
onLoadHistory: (item: HistoryItem) => void;
onExpandAll?: () => void;
onCollapseAll?: () => void;
onLoadHistory: (item: DAGHistoryItem) => void;
onResetView?: () => void;
visualSettings: VisualSettings;
onVisualSettingsChange: (settings: VisualSettings) => void;
}
@@ -62,8 +74,7 @@ export function InputPanel({
currentResult,
onAnalyze,
onLoadHistory,
onExpandAll,
onCollapseAll,
onResetView,
visualSettings,
onVisualSettingsChange,
}: InputPanelProps) {
@@ -137,7 +148,7 @@ export function InputPanel({
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `${currentResult.name || 'mindmap'}.json`;
a.download = `${currentResult.query || 'dag'}.json`;
a.click();
URL.revokeObjectURL(url);
};
@@ -148,134 +159,131 @@ export function InputPanel({
return;
}
const nodeToMarkdown = (node: AttributeNode, level: number = 0): string => {
const indent = ' '.repeat(level);
let md = `${indent}- ${node.name}\n`;
if (node.children) {
node.children.forEach((child) => {
md += nodeToMarkdown(child, level + 1);
});
// Group nodes by category
const nodesByCategory: Record<string, string[]> = {};
for (const node of currentResult.nodes) {
if (!nodesByCategory[node.category]) {
nodesByCategory[node.category] = [];
}
nodesByCategory[node.category].push(node.name);
}
let markdown = `# ${currentResult.query}\n\n`;
for (const cat of currentResult.categories) {
const nodes = nodesByCategory[cat.name] || [];
markdown += `## ${cat.name}\n`;
for (const name of nodes) {
markdown += `- ${name}\n`;
}
markdown += '\n';
}
return md;
};
const markdown = `# ${currentResult.name}\n\n${currentResult.children?.map((c) => nodeToMarkdown(c, 0)).join('') || ''}`;
const blob = new Blob([markdown], { type: 'text/markdown' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `${currentResult.name || 'mindmap'}.md`;
a.download = `${currentResult.query || 'dag'}.md`;
a.click();
URL.revokeObjectURL(url);
};
const handleExportSVG = () => {
const svg = document.querySelector('.mindmap-svg');
if (!svg) {
const reactFlowWrapper = document.querySelector('.react-flow');
if (!reactFlowWrapper) {
message.warning('No mindmap to export');
return;
}
const viewport = reactFlowWrapper.querySelector('.react-flow__viewport');
if (!viewport) {
message.warning('No mindmap to export');
return;
}
const svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg');
svg.setAttribute('width', String(reactFlowWrapper.clientWidth));
svg.setAttribute('height', String(reactFlowWrapper.clientHeight));
svg.setAttribute('xmlns', 'http://www.w3.org/2000/svg');
const viewportClone = viewport.cloneNode(true) as SVGGElement;
svg.appendChild(viewportClone);
const svgData = new XMLSerializer().serializeToString(svg);
const blob = new Blob([svgData], { type: 'image/svg+xml' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `${currentResult?.name || 'mindmap'}.svg`;
a.download = `${currentResult?.query || 'dag'}.svg`;
a.click();
URL.revokeObjectURL(url);
};
const handleExportPNG = () => {
const svg = document.querySelector('.mindmap-svg') as SVGSVGElement;
if (!svg) {
const reactFlowWrapper = document.querySelector('.react-flow') as HTMLElement;
if (!reactFlowWrapper) {
message.warning('No mindmap to export');
return;
}
const viewport = reactFlowWrapper.querySelector('.react-flow__viewport');
if (!viewport) {
message.warning('No mindmap to export');
return;
}
const svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg');
svg.setAttribute('width', String(reactFlowWrapper.clientWidth));
svg.setAttribute('height', String(reactFlowWrapper.clientHeight));
svg.setAttribute('xmlns', 'http://www.w3.org/2000/svg');
svg.appendChild(viewport.cloneNode(true));
const svgData = new XMLSerializer().serializeToString(svg);
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
const img = new Image();
img.onload = () => {
canvas.width = svg.clientWidth * 2;
canvas.height = svg.clientHeight * 2;
canvas.width = reactFlowWrapper.clientWidth * 2;
canvas.height = reactFlowWrapper.clientHeight * 2;
ctx?.scale(2, 2);
ctx?.drawImage(img, 0, 0);
const pngUrl = canvas.toDataURL('image/png');
const a = document.createElement('a');
a.href = pngUrl;
a.download = `${currentResult?.name || 'mindmap'}.png`;
a.download = `${currentResult?.query || 'dag'}.png`;
a.click();
};
img.src = 'data:image/svg+xml;base64,' + btoa(unescape(encodeURIComponent(svgData)));
};
// Helper to format chain display (supports both fixed and dynamic chains)
const formatChain = (chain: CausalChain | DynamicCausalChain): string => {
if ('chain' in chain) {
// Dynamic chain
return Object.values(chain.chain).join(' → ');
} else {
// Fixed chain
return `${chain.material}${chain.function}${chain.usage}${chain.user}`;
}
};
const renderProgressIndicator = () => {
if (progress.step === 'idle' || progress.step === 'done') return null;
const percent = progress.step === 'step0'
? 5
? 15
: progress.step === 'step1'
? 10
: progress.step === 'chains'
? 10 + (progress.currentChainIndex / progress.totalChains) * 90
? 50
: progress.step === 'relationships'
? 85
: 100;
return (
<div style={{ marginBottom: 16, padding: 12, background: 'rgba(0,0,0,0.04)', borderRadius: 8 }}>
<Space direction="vertical" style={{ width: '100%' }}>
<Space>
{progress.step === 'error' ? (
<Tag color="error">Error</Tag>
) : (
<LoadingOutlined spin />
)}
<Text>{progress.message}</Text>
</Space>
<Progress percent={Math.round(percent)} size="small" status={progress.step === 'error' ? 'exception' : 'active'} />
{/* Show categories used */}
{progress.categoriesUsed && progress.categoriesUsed.length > 0 && (
<div>
<Text type="secondary" style={{ fontSize: 12 }}>Categories:</Text>
<div style={{ marginTop: 4 }}>
{progress.categoriesUsed.map((cat, i) => (
<Tag key={i} color={cat.is_fixed ? 'default' : 'blue'}>
{cat.name}
</Tag>
))}
</div>
</div>
)}
{progress.completedChains.length > 0 && (
<div style={{ marginTop: 8 }}>
<Text type="secondary" style={{ fontSize: 12 }}>Completed chains:</Text>
<div style={{ maxHeight: 120, overflow: 'auto', marginTop: 4 }}>
{progress.completedChains.map((chain, i) => (
<div key={i} style={{ fontSize: 11, padding: '2px 0' }}>
<CheckCircleOutlined style={{ color: '#52c41a', marginRight: 4 }} />
{formatChain(chain)}
</div>
))}
</div>
</div>
)}
</Space>
</div>
<Alert
type={progress.step === 'error' ? 'error' : 'info'}
icon={progress.step === 'error' ? undefined : <LoadingOutlined spin />}
message={progress.message}
description={
<Progress
percent={Math.round(percent)}
size="small"
status={progress.step === 'error' ? 'exception' : 'active'}
strokeColor={{ from: '#108ee9', to: '#87d068' }}
/>
}
style={{ marginBottom: 16 }}
showIcon
/>
);
};
@@ -291,7 +299,6 @@ export function InputPanel({
onCustomCategoriesChange={setCustomCategories}
suggestedCount={suggestedCategoryCount}
onSuggestedCountChange={setSuggestedCategoryCount}
step0Result={progress.step0Result}
disabled={loading}
/>
),
@@ -300,9 +307,9 @@ export function InputPanel({
key: 'llm',
label: 'LLM Parameters',
children: (
<Space direction="vertical" style={{ width: '100%' }}>
<Space direction="vertical" style={{ width: '100%' }} size="middle">
<div>
<Text>Temperature: {temperature}</Text>
<Text type="secondary" style={{ fontSize: 12 }}>Temperature: {temperature}</Text>
<Slider
min={0}
max={1}
@@ -313,7 +320,7 @@ export function InputPanel({
/>
</div>
<div>
<Text>Chain Count: {chainCount}</Text>
<Text type="secondary" style={{ fontSize: 12 }}>Chain Count: {chainCount}</Text>
<Slider
min={1}
max={10}
@@ -330,9 +337,9 @@ export function InputPanel({
key: 'visual',
label: 'Visual Settings',
children: (
<Space direction="vertical" style={{ width: '100%' }}>
<Space direction="vertical" style={{ width: '100%' }} size="middle">
<div>
<Text>Node Spacing: {visualSettings.nodeSpacing}</Text>
<Text type="secondary" style={{ fontSize: 12 }}>Node Spacing: {visualSettings.nodeSpacing}px</Text>
<Slider
min={20}
max={80}
@@ -341,7 +348,7 @@ export function InputPanel({
/>
</div>
<div>
<Text>Font Size: {visualSettings.fontSize}px</Text>
<Text type="secondary" style={{ fontSize: 12 }}>Font Size: {visualSettings.fontSize}px</Text>
<Slider
min={10}
max={18}
@@ -349,14 +356,14 @@ export function InputPanel({
onChange={(v) => onVisualSettingsChange({ ...visualSettings, fontSize: v })}
/>
</div>
<Space>
<Button icon={<ExpandAltOutlined />} onClick={onExpandAll} disabled={!currentResult}>
Expand All
<Button
icon={<ReloadOutlined />}
onClick={onResetView}
disabled={!currentResult}
block
>
Reset View
</Button>
<Button icon={<ShrinkOutlined />} onClick={onCollapseAll} disabled={!currentResult}>
Collapse All
</Button>
</Space>
</Space>
),
},
@@ -364,28 +371,63 @@ export function InputPanel({
key: 'export',
label: 'Export',
children: (
<Space wrap>
<Button icon={<DownloadOutlined />} onClick={handleExportPNG} disabled={!currentResult}>
<Space direction="vertical" style={{ width: '100%' }} size="small">
<Button.Group style={{ width: '100%' }}>
<Button
icon={<FileImageOutlined />}
onClick={handleExportPNG}
disabled={!currentResult}
style={{ flex: 1 }}
>
PNG
</Button>
<Button icon={<DownloadOutlined />} onClick={handleExportSVG} disabled={!currentResult}>
<Button
icon={<FileImageOutlined />}
onClick={handleExportSVG}
disabled={!currentResult}
style={{ flex: 1 }}
>
SVG
</Button>
<Button icon={<DownloadOutlined />} onClick={handleExportJSON} disabled={!currentResult}>
</Button.Group>
<Button.Group style={{ width: '100%' }}>
<Button
icon={<CodeOutlined />}
onClick={handleExportJSON}
disabled={!currentResult}
style={{ flex: 1 }}
>
JSON
</Button>
<Button icon={<DownloadOutlined />} onClick={handleExportMarkdown} disabled={!currentResult}>
Markdown
<Button
icon={<FileTextOutlined />}
onClick={handleExportMarkdown}
disabled={!currentResult}
style={{ flex: 1 }}
>
MD
</Button>
</Button.Group>
</Space>
),
},
];
return (
<div style={{ display: 'flex', flexDirection: 'column', height: '100%', padding: 16 }}>
<Space direction="vertical" style={{ width: '100%', marginBottom: 16 }}>
<Text strong>Model</Text>
<div style={{
display: 'flex',
flexDirection: 'column',
height: '100%',
padding: 16,
gap: 16
}}>
{/* Main Input Card */}
<Card
size="small"
title={<Text strong>Analyze Object</Text>}
styles={{ body: { padding: 12 } }}
>
<Space direction="vertical" style={{ width: '100%' }} size="middle">
<Select
style={{ width: '100%' }}
value={selectedModel}
@@ -393,17 +435,14 @@ export function InputPanel({
loading={loadingModels}
placeholder="Select a model"
options={models.map((m) => ({ label: m, value: m }))}
size="middle"
/>
</Space>
<Space direction="vertical" style={{ width: '100%', marginBottom: 16 }}>
<Text strong>Input</Text>
<TextArea
value={query}
onChange={(e) => setQuery(e.target.value)}
onKeyPress={handleKeyPress}
placeholder="Enter an object to analyze (e.g., umbrella)"
autoSize={{ minRows: 3, maxRows: 6 }}
placeholder="Enter an object to analyze (e.g., umbrella, smartphone)"
autoSize={{ minRows: 2, maxRows: 4 }}
/>
<Button
type="primary"
@@ -411,36 +450,56 @@ export function InputPanel({
onClick={handleAnalyze}
loading={loading}
block
size="large"
>
Analyze
</Button>
</Space>
</Card>
{/* Progress Indicator */}
{renderProgressIndicator()}
<Collapse items={collapseItems} defaultActiveKey={['llm']} size="small" style={{ marginBottom: 16 }} />
{/* Settings Collapse */}
<Collapse
items={collapseItems}
defaultActiveKey={[]}
size="small"
style={{ background: 'transparent' }}
/>
<Divider style={{ margin: '8px 0' }} />
<Divider style={{ margin: '4px 0' }} />
<div style={{ flex: 1, overflow: 'auto' }}>
<Text strong>
<HistoryOutlined /> History
</Text>
{/* History Section */}
<div style={{ flex: 1, overflow: 'auto', minHeight: 0 }}>
<Title level={5} style={{ marginBottom: 8 }}>
<HistoryOutlined style={{ marginRight: 8 }} />
History
</Title>
<List
size="small"
dataSource={history}
locale={{ emptyText: 'No history yet' }}
renderItem={(item) => (
<List.Item
style={{ cursor: 'pointer', padding: '8px 0' }}
style={{
cursor: 'pointer',
padding: '8px 12px',
borderRadius: 6,
marginBottom: 4,
transition: 'background 0.2s',
}}
onClick={() => onLoadHistory(item)}
className="history-item"
>
<Text ellipsis style={{ maxWidth: '100%' }}>
<div style={{ flex: 1, minWidth: 0 }}>
<Text ellipsis style={{ display: 'block' }}>
{item.query}
</Text>
<Text type="secondary" style={{ fontSize: 12, marginLeft: 8 }}>
<Text type="secondary" style={{ fontSize: 11 }}>
{item.timestamp.toLocaleTimeString()}
</Text>
</div>
</List.Item>
)}
/>

View File

@@ -0,0 +1,104 @@
import { forwardRef, useImperativeHandle, useMemo } from 'react';
import {
ReactFlow,
useReactFlow,
ReactFlowProvider,
Background,
} from '@xyflow/react';
import '@xyflow/react/dist/style.css';
import type { AttributeDAG } from '../types';
import { nodeTypes, useDAGLayout } from './dag';
import '../styles/mindmap.css';
interface VisualSettings {
nodeSpacing: number;
fontSize: number;
}
interface MindmapDAGProps {
data: AttributeDAG;
isDark: boolean;
visualSettings: VisualSettings;
}
export interface MindmapDAGRef {
resetView: () => void;
}
// Inner component that uses useReactFlow
const MindmapDAGInner = forwardRef<MindmapDAGRef, MindmapDAGProps>(
({ data, isDark, visualSettings }, ref) => {
const { setViewport } = useReactFlow();
// Layout configuration
const layoutConfig = useMemo(
() => ({
nodeHeight: 32,
headerGap: 12,
headerHeight: 28,
nodeSpacing: Math.max(visualSettings.nodeSpacing, 40),
fontSize: visualSettings.fontSize,
isDark,
}),
[visualSettings.nodeSpacing, visualSettings.fontSize, isDark]
);
// Generate nodes with layout
const nodes = useDAGLayout(data, layoutConfig);
// Expose resetView via ref
useImperativeHandle(
ref,
() => ({
resetView: () => {
setViewport({ x: 50, y: 50, zoom: 1 }, { duration: 300 });
},
}),
[setViewport]
);
return (
<ReactFlow
nodes={nodes}
edges={[]}
nodeTypes={nodeTypes}
fitView
fitViewOptions={{ padding: 0.2 }}
minZoom={0.3}
maxZoom={3}
defaultViewport={{ x: 50, y: 50, zoom: 1 }}
proOptions={{ hideAttribution: true }}
nodesDraggable={false}
nodesConnectable={false}
elementsSelectable={false}
panOnDrag
zoomOnScroll
zoomOnPinch
>
<Background
color={isDark ? '#333' : '#e0e0e0'}
gap={20}
size={1}
/>
</ReactFlow>
);
}
);
MindmapDAGInner.displayName = 'MindmapDAGInner';
// Wrapper with ReactFlowProvider
export const MindmapDAG = forwardRef<MindmapDAGRef, MindmapDAGProps>(
(props, ref) => (
<div
className={`mindmap-container ${props.isDark ? 'mindmap-dark' : 'mindmap-light'}`}
>
<ReactFlowProvider>
<MindmapDAGInner {...props} ref={ref} />
</ReactFlowProvider>
</div>
)
);
MindmapDAG.displayName = 'MindmapDAG';

View File

@@ -1,8 +1,8 @@
import { forwardRef } from 'react';
import { Empty, Spin } from 'antd';
import type { AttributeNode } from '../types';
import { MindmapD3 } from './MindmapD3';
import type { MindmapD3Ref } from './MindmapD3';
import type { AttributeDAG } from '../types';
import { MindmapDAG } from './MindmapDAG';
import type { MindmapDAGRef } from './MindmapDAG';
interface VisualSettings {
nodeSpacing: number;
@@ -10,14 +10,14 @@ interface VisualSettings {
}
interface MindmapPanelProps {
data: AttributeNode | null;
data: AttributeDAG | null;
loading: boolean;
error: string | null;
isDark: boolean;
visualSettings: VisualSettings;
}
export const MindmapPanel = forwardRef<MindmapD3Ref, MindmapPanelProps>(
export const MindmapPanel = forwardRef<MindmapDAGRef, MindmapPanelProps>(
({ data, loading, error, isDark, visualSettings }, ref) => {
if (loading) {
return (
@@ -64,7 +64,7 @@ export const MindmapPanel = forwardRef<MindmapD3Ref, MindmapPanelProps>(
);
}
return <MindmapD3 ref={ref} data={data} isDark={isDark} visualSettings={visualSettings} />;
return <MindmapDAG ref={ref} data={data} isDark={isDark} visualSettings={visualSettings} />;
}
);

View File

@@ -0,0 +1,12 @@
import { QueryNode } from './nodes/QueryNode';
import { CategoryHeaderNode } from './nodes/CategoryHeaderNode';
import { AttributeNode } from './nodes/AttributeNode';
export const nodeTypes = {
query: QueryNode,
categoryHeader: CategoryHeaderNode,
attribute: AttributeNode,
};
export { QueryNode, CategoryHeaderNode, AttributeNode };
export { useDAGLayout } from './useDAGLayout';

View File

@@ -0,0 +1,41 @@
import { memo, useState } from 'react';
interface AttributeNodeProps {
data: {
label: string;
fillColor: string;
strokeColor: string;
fontSize: number;
};
}
export const AttributeNode = memo(({ data }: AttributeNodeProps) => {
const { label, fillColor, strokeColor, fontSize } = data;
const [isHovered, setIsHovered] = useState(false);
return (
<div
onMouseEnter={() => setIsHovered(true)}
onMouseLeave={() => setIsHovered(false)}
style={{
padding: '6px 12px',
borderRadius: 6,
background: fillColor,
border: `${isHovered ? 3 : 2}px solid ${strokeColor}`,
color: '#fff',
fontSize: `${fontSize}px`,
fontWeight: 500,
textAlign: 'center',
cursor: 'pointer',
transition: 'border-width 0.2s ease, filter 0.2s ease',
filter: isHovered ? 'brightness(1.12)' : 'none',
whiteSpace: 'nowrap',
userSelect: 'none',
}}
>
{label}
</div>
);
});
AttributeNode.displayName = 'AttributeNode';

View File

@@ -0,0 +1,51 @@
import { memo } from 'react';
interface CategoryHeaderNodeProps {
data: {
label: string;
color: string;
isFixed: boolean;
isDark: boolean;
};
}
export const CategoryHeaderNode = memo(({ data }: CategoryHeaderNodeProps) => {
const { label, color, isFixed, isDark } = data;
return (
<div
style={{
display: 'flex',
alignItems: 'center',
gap: 4,
padding: '4px 10px',
borderRadius: 4,
background: color,
border: isFixed ? 'none' : `2px dashed ${isDark ? 'rgba(255,255,255,0.5)' : 'rgba(0,0,0,0.3)'}`,
color: '#fff',
fontSize: '13px',
fontWeight: 'bold',
textAlign: 'center',
whiteSpace: 'nowrap',
userSelect: 'none',
}}
>
{label}
{!isFixed && (
<span
style={{
fontSize: '10px',
padding: '1px 4px',
borderRadius: 3,
background: isDark ? 'rgba(255,255,255,0.2)' : 'rgba(0,0,0,0.15)',
marginLeft: 2,
}}
>
AI
</span>
)}
</div>
);
});
CategoryHeaderNode.displayName = 'CategoryHeaderNode';

View File

@@ -0,0 +1,34 @@
import { memo } from 'react';
interface QueryNodeProps {
data: {
label: string;
isDark: boolean;
fontSize: number;
};
}
export const QueryNode = memo(({ data }: QueryNodeProps) => {
const { label, isDark, fontSize } = data;
return (
<div
style={{
padding: '6px 12px',
borderRadius: 6,
background: isDark ? '#177ddc' : '#1890ff',
border: `2px solid ${isDark ? '#1890ff' : '#096dd9'}`,
color: '#fff',
fontSize: `${fontSize}px`,
fontWeight: 'bold',
textAlign: 'center',
whiteSpace: 'nowrap',
userSelect: 'none',
}}
>
{label}
</div>
);
});
QueryNode.displayName = 'QueryNode';

View File

@@ -0,0 +1,155 @@
import { useMemo } from 'react';
import type { Node } from '@xyflow/react';
import type { AttributeDAG, DAGNode } from '../../types';
interface LayoutConfig {
nodeHeight: number;
headerGap: number;
headerHeight: number;
nodeSpacing: number;
fontSize: number;
isDark: boolean;
}
const COLOR_PALETTE = [
{ dark: '#177ddc', light: '#1890ff' }, // blue
{ dark: '#854eca', light: '#722ed1' }, // purple
{ dark: '#13a8a8', light: '#13c2c2' }, // cyan
{ dark: '#d87a16', light: '#fa8c16' }, // orange
{ dark: '#49aa19', light: '#52c41a' }, // green
{ dark: '#1677ff', light: '#1890ff' }, // blue
{ dark: '#eb2f96', light: '#f759ab' }, // magenta
{ dark: '#faad14', light: '#ffc53d' }, // gold
{ dark: '#a0d911', light: '#bae637' }, // lime
];
function darken(hex: string, amount: number): string {
const num = parseInt(hex.slice(1), 16);
const r = Math.max(0, ((num >> 16) & 0xff) - Math.floor(255 * amount));
const g = Math.max(0, ((num >> 8) & 0xff) - Math.floor(255 * amount));
const b = Math.max(0, (num & 0xff) - Math.floor(255 * amount));
return `#${((r << 16) | (g << 8) | b).toString(16).padStart(6, '0')}`;
}
export function useDAGLayout(
data: AttributeDAG | null,
config: LayoutConfig
): Node[] {
return useMemo(() => {
if (!data) return [];
const {
nodeHeight,
headerGap,
headerHeight,
nodeSpacing,
fontSize,
isDark,
} = config;
const nodes: Node[] = [];
const sortedCategories = [...data.categories].sort((a, b) => a.order - b.order);
// Unified column spacing
const columnGap = 60; // Consistent gap between ALL adjacent elements
// Build category color map
const categoryColors: Record<string, { fill: string; stroke: string }> = {};
sortedCategories.forEach((cat, index) => {
const paletteIndex = index % COLOR_PALETTE.length;
const color = isDark
? COLOR_PALETTE[paletteIndex].dark
: COLOR_PALETTE[paletteIndex].light;
categoryColors[cat.name] = {
fill: color,
stroke: darken(color, 0.15),
};
});
// Group nodes by category
const nodesByCategory: Record<string, DAGNode[]> = {};
for (const node of data.nodes) {
if (!nodesByCategory[node.category]) {
nodesByCategory[node.category] = [];
}
nodesByCategory[node.category].push(node);
}
// Sort nodes within each category by order, then re-index locally
for (const cat of Object.keys(nodesByCategory)) {
nodesByCategory[cat].sort((a, b) => a.order - b.order);
}
// Calculate max column height for centering
const maxNodesInColumn = Math.max(
...sortedCategories.map((cat) => (nodesByCategory[cat.name] || []).length),
1
);
const maxTotalHeight = maxNodesInColumn * (nodeHeight + nodeSpacing) - nodeSpacing;
const contentStartY = headerHeight + headerGap;
// Layout constants - UNIFORM spacing for all columns
const colStep = 160; // Distance between column left edges (uniform for all)
// Helper function for column X position
const getColumnX = (colIndex: number) => colIndex * colStep;
// 1. Add Query Node (column 0, centered vertically)
const queryY = contentStartY + (maxTotalHeight - nodeHeight) / 2;
nodes.push({
id: 'query-node',
type: 'query',
position: { x: getColumnX(0), y: queryY },
data: {
label: data.query,
isDark,
fontSize,
},
draggable: false,
selectable: false,
});
// 2. Add Category Headers (starting from column 1)
sortedCategories.forEach((cat, colIndex) => {
const columnX = getColumnX(colIndex + 1); // +1 because column 0 is query
nodes.push({
id: `header-${cat.name}`,
type: 'categoryHeader',
position: { x: columnX, y: 0 },
data: {
label: cat.name,
color: categoryColors[cat.name]?.fill || '#666',
isFixed: cat.is_fixed,
isDark,
},
draggable: false,
selectable: false,
});
});
// 3. Add Attribute Nodes
sortedCategories.forEach((cat, colIndex) => {
const categoryNodes = nodesByCategory[cat.name] || [];
const columnX = getColumnX(colIndex + 1); // +1 because column 0 is query
categoryNodes.forEach((node, rowIndex) => {
const y = contentStartY + rowIndex * (nodeHeight + nodeSpacing);
nodes.push({
id: node.id,
type: 'attribute',
position: { x: columnX, y },
data: {
label: node.name,
fillColor: categoryColors[node.category]?.fill || '#666',
strokeColor: categoryColors[node.category]?.stroke || '#444',
fontSize,
},
draggable: false,
selectable: false,
});
});
});
return nodes;
}, [data, config]);
}

View File

@@ -1,24 +1,31 @@
import { useState, useCallback } from 'react';
import type {
AttributeNode,
HistoryItem,
StreamProgress,
StreamAnalyzeResponse
AttributeDAG,
DAGStreamAnalyzeResponse
} from '../types';
import { CategoryMode } from '../types';
import { analyzeAttributesStream } from '../services/api';
interface DAGProgress {
step: 'idle' | 'step0' | 'step1' | 'relationships' | 'done' | 'error';
message: string;
error?: string;
}
interface DAGHistoryItem {
query: string;
result: AttributeDAG;
timestamp: Date;
}
export function useAttribute() {
const [progress, setProgress] = useState<StreamProgress>({
const [progress, setProgress] = useState<DAGProgress>({
step: 'idle',
currentChainIndex: 0,
totalChains: 0,
completedChains: [],
message: '',
});
const [error, setError] = useState<string | null>(null);
const [currentResult, setCurrentResult] = useState<AttributeNode | null>(null);
const [history, setHistory] = useState<HistoryItem[]>([]);
const [currentResult, setCurrentResult] = useState<AttributeDAG | null>(null);
const [history, setHistory] = useState<DAGHistoryItem[]>([]);
const analyze = useCallback(async (
query: string,
@@ -32,9 +39,6 @@ export function useAttribute() {
// 重置狀態
setProgress({
step: 'idle',
currentChainIndex: 0,
totalChains: chainCount,
completedChains: [],
message: '準備開始分析...',
});
setError(null);
@@ -53,17 +57,15 @@ export function useAttribute() {
},
{
onStep0Start: () => {
setProgress(prev => ({
...prev,
setProgress({
step: 'step0',
message: '正在分析類別...',
}));
});
},
onStep0Complete: (result) => {
onStep0Complete: () => {
setProgress(prev => ({
...prev,
step0Result: result,
message: '類別分析完成',
}));
},
@@ -71,64 +73,49 @@ export function useAttribute() {
onCategoriesResolved: (categories) => {
setProgress(prev => ({
...prev,
categoriesUsed: categories,
message: `使用 ${categories.length} 個類別`,
}));
},
onStep1Start: () => {
setProgress(prev => ({
...prev,
setProgress({
step: 'step1',
message: '正在分析物件屬性列表...',
});
},
onStep1Complete: () => {
setProgress(prev => ({
...prev,
message: '屬性列表分析完成',
}));
},
onStep1Complete: (step1Result) => {
onRelationshipsStart: () => {
setProgress({
step: 'relationships',
message: '正在生成關係...',
});
},
onRelationshipsComplete: (count) => {
setProgress(prev => ({
...prev,
step1Result,
message: '屬性列表分析完成,開始生成因果鏈...',
message: `生成 ${count} 個關係`,
}));
},
onChainStart: (index, total) => {
setProgress(prev => ({
...prev,
step: 'chains',
currentChainIndex: index,
totalChains: total,
message: `正在生成第 ${index}/${total} 條因果鏈...`,
}));
},
onChainComplete: (index, chain) => {
setProgress(prev => ({
...prev,
completedChains: [...prev.completedChains, chain],
message: `${index} 條因果鏈生成完成`,
}));
},
onChainError: (index, errorMsg) => {
setProgress(prev => ({
...prev,
message: `${index} 條因果鏈生成失敗: ${errorMsg}`,
}));
},
onDone: (response: StreamAnalyzeResponse) => {
setProgress(prev => ({
...prev,
onDone: (response: DAGStreamAnalyzeResponse) => {
setProgress({
step: 'done',
message: '分析完成!',
}));
setCurrentResult(response.attributes);
});
setCurrentResult(response.dag);
setHistory((prev) => [
{
query,
result: response.attributes,
result: response.dag,
timestamp: new Date(),
},
...prev,
@@ -136,37 +123,32 @@ export function useAttribute() {
},
onError: (errorMsg) => {
setProgress(prev => ({
...prev,
setProgress({
step: 'error',
error: errorMsg,
message: `錯誤: ${errorMsg}`,
}));
});
setError(errorMsg);
},
}
);
} catch (err) {
const errorMessage = err instanceof Error ? err.message : 'Unknown error';
setProgress(prev => ({
...prev,
setProgress({
step: 'error',
error: errorMessage,
message: `錯誤: ${errorMessage}`,
}));
});
setError(errorMessage);
throw err;
}
}, []);
const loadFromHistory = useCallback((item: HistoryItem) => {
const loadFromHistory = useCallback((item: DAGHistoryItem) => {
setCurrentResult(item.result);
setError(null);
setProgress({
step: 'done',
currentChainIndex: 0,
totalChains: 0,
completedChains: [],
message: '從歷史記錄載入',
});
}, []);
@@ -176,14 +158,11 @@ export function useAttribute() {
setError(null);
setProgress({
step: 'idle',
currentChainIndex: 0,
totalChains: 0,
completedChains: [],
message: '',
});
}, []);
const isLoading = progress.step === 'step0' || progress.step === 'step1' || progress.step === 'chains';
const isLoading = progress.step === 'step0' || progress.step === 'step1' || progress.step === 'relationships';
return {
loading: isLoading,

View File

@@ -8,9 +8,102 @@ body {
margin: 0;
min-width: 320px;
min-height: 100vh;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif;
}
#root {
width: 100%;
height: 100%;
}
/* Global transitions for smooth theme switching */
.ant-layout,
.ant-layout-header,
.ant-layout-sider,
.ant-layout-content,
.ant-card,
.ant-collapse,
.ant-btn {
transition: background-color 0.3s ease, border-color 0.3s ease, box-shadow 0.3s ease;
}
/* Custom scrollbar styling */
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: transparent;
}
::-webkit-scrollbar-thumb {
background: rgba(128, 128, 128, 0.4);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: rgba(128, 128, 128, 0.6);
}
/* History item hover effect */
.history-item {
transition: background-color 0.2s ease, transform 0.2s ease;
}
.history-item:hover {
background-color: rgba(24, 144, 255, 0.08) !important;
transform: translateX(4px);
}
/* Button hover enhancement */
.ant-btn {
transition: all 0.2s cubic-bezier(0.4, 0, 0.2, 1);
}
.ant-btn:hover {
transform: translateY(-1px);
}
.ant-btn:active {
transform: translateY(0);
}
/* Card subtle shadow */
.ant-card {
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.03), 0 2px 4px rgba(0, 0, 0, 0.03);
}
.ant-card:hover {
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.06), 0 4px 16px rgba(0, 0, 0, 0.04);
}
/* Collapse panel enhancement */
.ant-collapse {
border-radius: 8px !important;
overflow: hidden;
}
.ant-collapse-item {
border-radius: 0 !important;
}
/* Slider enhancement */
.ant-slider-handle {
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
.ant-slider-handle:hover {
transform: scale(1.2);
}
/* Select dropdown enhancement */
.ant-select-dropdown {
border-radius: 8px;
box-shadow: 0 6px 16px rgba(0, 0, 0, 0.12);
}
/* Alert enhancement */
.ant-alert {
border-radius: 8px;
}

View File

@@ -1,13 +1,11 @@
import type {
ModelListResponse,
StreamAnalyzeRequest,
StreamAnalyzeResponse,
Step1Result,
CausalChain,
Step0Result,
CategoryDefinition,
DynamicStep1Result,
DynamicCausalChain
DAGStreamAnalyzeResponse
} from '../types';
// 自動使用當前瀏覽器的 hostname支援遠端存取
@@ -19,10 +17,9 @@ export interface SSECallbacks {
onCategoriesResolved?: (categories: CategoryDefinition[]) => void;
onStep1Start?: () => void;
onStep1Complete?: (result: Step1Result | DynamicStep1Result) => void;
onChainStart?: (index: number, total: number) => void;
onChainComplete?: (index: number, chain: CausalChain | DynamicCausalChain) => void;
onChainError?: (index: number, error: string) => void;
onDone?: (response: StreamAnalyzeResponse) => void;
onRelationshipsStart?: () => void;
onRelationshipsComplete?: (count: number) => void;
onDone?: (response: DAGStreamAnalyzeResponse) => void;
onError?: (error: string) => void;
}
@@ -87,14 +84,11 @@ export async function analyzeAttributesStream(
case 'step1_complete':
callbacks.onStep1Complete?.(eventData.result);
break;
case 'chain_start':
callbacks.onChainStart?.(eventData.index, eventData.total);
case 'relationships_start':
callbacks.onRelationshipsStart?.();
break;
case 'chain_complete':
callbacks.onChainComplete?.(eventData.index, eventData.chain);
break;
case 'chain_error':
callbacks.onChainError?.(eventData.index, eventData.error);
case 'relationships_complete':
callbacks.onRelationshipsComplete?.(eventData.count);
break;
case 'done':
callbacks.onDone?.(eventData);

View File

@@ -2,289 +2,29 @@
width: 100%;
height: 100%;
overflow: hidden;
border-radius: 8px;
}
.mindmap-svg {
/* React Flow overrides */
.react-flow {
width: 100%;
height: 100%;
}
.node {
cursor: pointer;
.mindmap-dark .react-flow {
background: #141414;
}
.node rect {
stroke-width: 2px;
transition: all 0.3s ease;
.mindmap-light .react-flow {
background: #fafafa;
}
.node rect:hover {
stroke-width: 3px;
filter: brightness(1.1);
/* Hide React Flow attribution */
.react-flow__attribution {
display: none;
}
.node text {
font-size: 13px;
font-weight: 500;
pointer-events: none;
}
.link {
fill: none;
stroke-width: 2px;
transition: stroke 0.3s ease;
}
/* Light theme */
.mindmap-light .node-rect {
stroke: #333;
}
.mindmap-light .node-rect.collapsed {
stroke-width: 3px;
}
/* Light theme - Category colors */
.mindmap-light .node-rect.category-root {
fill: #1890ff;
stroke: #096dd9;
}
.mindmap-light .node-text.category-root {
fill: #fff;
}
.mindmap-light .node-rect.category-材料 {
fill: #722ed1;
stroke: #531dab;
}
.mindmap-light .node-text.category-材料 {
fill: #fff;
}
.mindmap-light .node-rect.category-功能 {
fill: #13c2c2;
stroke: #08979c;
}
.mindmap-light .node-text.category-功能 {
fill: #fff;
}
.mindmap-light .node-rect.category-用途 {
fill: #fa8c16;
stroke: #d46b08;
}
.mindmap-light .node-text.category-用途 {
fill: #fff;
}
.mindmap-light .node-rect.category-使用族群 {
fill: #52c41a;
stroke: #389e0d;
}
.mindmap-light .node-text.category-使用族群 {
fill: #fff;
}
/* Light theme - Fallback depth colors */
.mindmap-light .node-rect.depth-0 {
fill: #1890ff;
stroke: #096dd9;
}
.mindmap-light .node-text.depth-0 {
fill: #fff;
}
.mindmap-light .node-rect.depth-1 {
fill: #722ed1;
stroke: #531dab;
}
.mindmap-light .node-text.depth-1 {
fill: #fff;
}
.mindmap-light .node-rect.depth-2 {
fill: #13c2c2;
stroke: #08979c;
}
.mindmap-light .node-text.depth-2 {
fill: #fff;
}
.mindmap-light .node-rect.depth-3 {
fill: #fa8c16;
stroke: #d46b08;
}
.mindmap-light .node-text.depth-3 {
fill: #fff;
}
.mindmap-light .node-rect.depth-4 {
fill: #52c41a;
stroke: #389e0d;
}
.mindmap-light .node-text.depth-4 {
fill: #fff;
}
.mindmap-light .node-rect.depth-5 {
fill: #1890ff;
stroke: #096dd9;
}
.mindmap-light .node-text.depth-5 {
fill: #fff;
}
.mindmap-light .node-rect.depth-6 {
fill: #f759ab;
stroke: #eb2f96;
}
.mindmap-light .node-text.depth-6 {
fill: #fff;
}
.mindmap-light .node-rect.depth-7 {
fill: #ffc53d;
stroke: #faad14;
}
.mindmap-light .node-text.depth-7 {
fill: #fff;
}
.mindmap-light .node-rect.depth-8 {
fill: #bae637;
stroke: #a0d911;
}
.mindmap-light .node-text.depth-8 {
fill: #fff;
}
.mindmap-light .link {
stroke: #bfbfbf;
}
/* Dark theme */
.mindmap-dark .node-rect {
stroke: #444;
}
.mindmap-dark .node-rect.collapsed {
stroke-width: 3px;
}
/* Dark theme - Category colors */
.mindmap-dark .node-rect.category-root {
fill: #177ddc;
stroke: #1890ff;
}
.mindmap-dark .node-text.category-root {
fill: #fff;
}
.mindmap-dark .node-rect.category-材料 {
fill: #854eca;
stroke: #9254de;
}
.mindmap-dark .node-text.category-材料 {
fill: #fff;
}
.mindmap-dark .node-rect.category-功能 {
fill: #13a8a8;
stroke: #36cfc9;
}
.mindmap-dark .node-text.category-功能 {
fill: #fff;
}
.mindmap-dark .node-rect.category-用途 {
fill: #d87a16;
stroke: #ffa940;
}
.mindmap-dark .node-text.category-用途 {
fill: #fff;
}
.mindmap-dark .node-rect.category-使用族群 {
fill: #49aa19;
stroke: #73d13d;
}
.mindmap-dark .node-text.category-使用族群 {
fill: #fff;
}
/* Dark theme - Fallback depth colors */
.mindmap-dark .node-rect.depth-0 {
fill: #177ddc;
stroke: #1890ff;
}
.mindmap-dark .node-text.depth-0 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-1 {
fill: #854eca;
stroke: #9254de;
}
.mindmap-dark .node-text.depth-1 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-2 {
fill: #13a8a8;
stroke: #36cfc9;
}
.mindmap-dark .node-text.depth-2 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-3 {
fill: #d87a16;
stroke: #ffa940;
}
.mindmap-dark .node-text.depth-3 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-4 {
fill: #49aa19;
stroke: #73d13d;
}
.mindmap-dark .node-text.depth-4 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-5 {
fill: #1677ff;
stroke: #4096ff;
}
.mindmap-dark .node-text.depth-5 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-6 {
fill: #eb2f96;
stroke: #f759ab;
}
.mindmap-dark .node-text.depth-6 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-7 {
fill: #faad14;
stroke: #ffc53d;
}
.mindmap-dark .node-text.depth-7 {
fill: #fff;
}
.mindmap-dark .node-rect.depth-8 {
fill: #a0d911;
stroke: #bae637;
}
.mindmap-dark .node-text.depth-8 {
fill: #fff;
}
.mindmap-dark .link {
stroke: #434343;
/* Background pattern */
.react-flow__background {
opacity: 0.5;
}

View File

@@ -76,6 +76,7 @@ export interface DynamicCausalChain {
export const CategoryMode = {
FIXED_ONLY: 'fixed_only',
FIXED_PLUS_CUSTOM: 'fixed_plus_custom',
FIXED_PLUS_DYNAMIC: 'fixed_plus_dynamic',
CUSTOM_ONLY: 'custom_only',
DYNAMIC_AUTO: 'dynamic_auto',
} as const;
@@ -113,3 +114,40 @@ export interface StreamAnalyzeResponse {
causal_chains: (CausalChain | DynamicCausalChain)[];
attributes: AttributeNode;
}
// ===== DAG (Directed Acyclic Graph) types =====
export interface DAGNode {
id: string;
name: string;
category: string;
order: number;
}
export interface DAGEdge {
source_id: string;
target_id: string;
}
export interface AttributeDAG {
query: string;
categories: CategoryDefinition[];
nodes: DAGNode[];
edges: DAGEdge[];
}
export interface DAGRelationship {
source_category: string;
source: string;
target_category: string;
target: string;
}
export interface DAGStreamAnalyzeResponse {
query: string;
step0_result?: Step0Result;
categories_used: CategoryDefinition[];
step1_result: DynamicStep1Result;
relationships: DAGRelationship[];
dag: AttributeDAG;
}